cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340700 Lower of a pair of adjacent perfect powers, both with exponents > 2.

This page as a plain text file.
%I A340700 #21 Jan 22 2021 10:02:48
%S A340700 27,64,125,243,1000,1296,2187,50625,59049,194481,279841,456533,614125,
%T A340700 3111696,6434856,22665187,25411681,38950081,62742241,96059601,
%U A340700 131079601,418161601,506250000,741200625,796594176,1249198336,2136719872,2217342464,5554571841,5802782976
%N A340700 Lower of a pair of adjacent perfect powers, both with exponents > 2.
%C A340700 It is conjectured that the intersection of A340700 and A340701 is empty, i.e., that no 3 immediately consecutive perfect powers with all exponents > 2 (A076467) exist. No counterexample < 3.4*10^30 was found.
%H A340700 Hugo Pfoertner, <a href="/A340700/b340700.txt">Table of n, a(n) for n = 1..1670</a>
%H A340700 StackExchange MathOverflow, <a href="https://mathoverflow.net/questions/62444/are-there-ever-three-perfect-powers-between-consecutive-squares/62479">Are there ever three perfect powers between consecutive squares?</a> Answers by Gjergji Zaimi and Felipe Voloch (2011).
%H A340700 Michel Waldschmidt, <a href="https://arxiv.org/abs/0908.4031">Perfect Powers: Pillai's works and their developments</a>, arXiv:0908.4031 [math.NT], 27 Aug 2009.
%F A340700 a(n) = A340702(n)^A340704(n) = A340701(n) - A340706(n).
%e A340700 Initial terms of sequences A340700 .. A340706:
%e A340700 a(n) = x^p,
%e A340700 A340701(n) = A340703(n)^A340705(n) = y^q,
%e A340700 A340706(n) = A340701(n) - a(n) = y^q - x^p.
%e A340700 .
%e A340700   n  a(n)    x ^  p  A340701    y ^  q  A340706 adjacent squares
%e A340700   1    27 =  3 ^  3,      32 =  2 ^  5,      5  5^2=25, 6^2=36
%e A340700   2    64 =  2 ^  6,      81 =  3 ^  4,     17  8^2=64, 9^2=81
%e A340700   3   125 =  5 ^  3,     128 =  2 ^  7,      3  11^2=121, 12^2=144
%e A340700   4   243 =  3 ^  5,     256 =  2 ^  8,     13  15^2=225, 16^2=256
%e A340700   5  1000 = 10 ^  3,    1024 =  2 ^ 10,     24  31^2=961, 32^2=1024
%e A340700   6  1296 =  6 ^  4,    1331 = 11 ^  3,     35  36^2=1296, 37^2=1369
%e A340700   7  2187 =  3 ^  7,    2197 = 13 ^  3,     10  46^2=2116, 47^2=2209
%e A340700   8 50625 = 15 ^  4,   50653 = 37 ^  3,     28  225^2=50625, 226^2=51076
%e A340700   9 59049 =  3 ^ 10,   59319 = 39 ^  3,    270  243^2=59049, 244^2=59536
%Y A340700 The corresponding upper members of the pairs are A340701.
%Y A340700 Cf. A001597, A076467, A097056, A340642, A340702, A340703, A340704, A340705, A340706.
%Y A340700 Cf. A117934 (excluding pairs where one of the members is a square).
%K A340700 nonn
%O A340700 1,1
%A A340700 _Hugo Pfoertner_, Jan 16 2021