A340727 a(n) is the smallest integer that can be written as a product of n distinct integers > 1 in at least two different ways.
12, 48, 240, 1440, 8640, 60480, 604800, 5443200, 59875200, 718502400, 9340531200, 124540416000, 1743565824000, 29640619008000, 502146957312000, 8536498274304000, 162193467211776000, 3406062811447296000, 68121256228945920000, 1498667637036810240000
Offset: 2
Keywords
Examples
a(2) = 12 since 12 = 2*6 = 3*4. a(4) = 240 since 240 = 2*3*4*10 = 2*3*5*8.
Links
- James Rayman, Table of n, a(n) for n = 2..400
Crossrefs
Cf. A081957.
Programs
-
Python
from heapq import * import math def a(n): prev, visited, v = 0, set(), list(range(2, n+2)) pq = [(math.factorial(n+1), v)] while True: prod, v = heappop(pq) if tuple(v) in visited: continue visited.add(tuple(v)) if prev != prod: prev = prod else: return prod for i in range(n): if i == n-1 or v[i] + 1 < v[i+1]: u = v[:] u[i] += 1 heappush(pq, (prod // v[i] * u[i], u))