This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340729 #6 Jan 17 2021 23:09:25 %S A340729 1,3,8,18,60,150,210,420,390,840,7770,5460,9282,2310,3570,2730,10710, %T A340729 39270,117810,60060,154770,43890,53130,46410,66990,62790,176358, %U A340729 106260,30030,642180,1111110,1919190,930930,1688610,1360590,1531530,1291290,570570,1138830,510510,690690,1141140,870870 %N A340729 a(n) is the least k such that there are exactly n divisors d of k for which k/d-d is prime. %C A340729 a(n) is the least solution of A340728(k) = n. %e A340729 a(3) = 18 because there are 3 such divisors of 18, namely 1,2,3: 18/1-1 = 17, 18/2-2 = 7 and 18/3-3 = 3, and 18 is the least number with 3 such divisors. %p A340729 f:= proc(n) local D,i,m; %p A340729 D:= sort(convert(numtheory:-divisors(n),list)); %p A340729 m:= nops(D); %p A340729 nops(select(i -> isprime(D[m+1-i]-D[i]), [$1..(m+1)/2])); %p A340729 end proc: %p A340729 N:= 30: # for a(0)..a(N) %p A340729 V:= Array(0..N): count:= 0: %p A340729 for n from 1 while count < N+1 do %p A340729 v:= f(n); %p A340729 if v <= N and V[v]=0 then count:= count+1; V[v]:= n fi %p A340729 od: %p A340729 convert(V,list); %Y A340729 Cf. A340728. %K A340729 nonn %O A340729 0,2 %A A340729 _J. M. Bergot_ and _Robert Israel_, Jan 17 2021