cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340757 Counterexamples to a conjecture of Ramanujan about congruences related to the partition function.

Original entry on oeis.org

243, 586, 1272, 2301, 2644, 2987, 3673, 4702, 5045, 5388, 6074, 7103, 7446, 7789, 8475, 9504, 9847, 10190, 10876, 11905, 12248, 12591, 13277, 14306, 14649, 14992, 15678, 16707, 17050, 17393, 18079, 19108, 19451, 19794, 20480, 21509, 21852, 22195, 22881, 23910
Offset: 1

Views

Author

Washington Bomfim, Jan 19 2021

Keywords

Comments

For b in 5,7,11, and all integers n,e >= 1, Ramanujan conjectured that if (24*n-1) is divisible by b^e, the partition function p(n) = A000041(n) is also divisible by b^e.
Chowla found the first counterexample a(1) = 243. Watson showed the conjecture holds for b=5, and Atkin showed it holds for b=11. Watson showed p(n) is divisible by 7^floor((d+2)/2) when 24n-1 is divisible by 7^d, so that exceptions here are restricted to 24n-1 == 0 (mod 7^3), which is n == 243 (mod 7^3).
See A340957 for the converse, those n == 243 (mod 7^3) where the conjecture does hold.

Examples

			243 is a term because for n = 243, the condition of Ramanujan (24*n - 1) divisible by b^e is true, and p(n) is not divisible by (b^e). [We have base b=7, and exponent e=3 in this case.] Since a(1) = A182719(91), 90 numbers satisfy the conjecture before the first counterexample a(1).
		

Crossrefs

Programs

  • PARI
    seq(x) = {my( n = -100, N=0); while(N < x, n += 343; if(valuation(numbpart(n),7) < valuation(24*n-1,7), print1(n", "); N++)) };
    seq(100); \\ Gives the first 100 terms of the sequence.