A340757 Counterexamples to a conjecture of Ramanujan about congruences related to the partition function.
243, 586, 1272, 2301, 2644, 2987, 3673, 4702, 5045, 5388, 6074, 7103, 7446, 7789, 8475, 9504, 9847, 10190, 10876, 11905, 12248, 12591, 13277, 14306, 14649, 14992, 15678, 16707, 17050, 17393, 18079, 19108, 19451, 19794, 20480, 21509, 21852, 22195, 22881, 23910
Offset: 1
Examples
243 is a term because for n = 243, the condition of Ramanujan (24*n - 1) divisible by b^e is true, and p(n) is not divisible by (b^e). [We have base b=7, and exponent e=3 in this case.] Since a(1) = A182719(91), 90 numbers satisfy the conjecture before the first counterexample a(1).
Links
- A. O. L. Atkin and P. Swinnerton-Dyer, Some Properties of Partitions,, Proceedings of the London Math. Soc., V. s3-4, Issue 1, pp. 84-106, (1954)
- A. O. L. Atkin and S. M. Hussain, Some Properties of Partitions II, Trans. Amer. Math. Soc. 89, pp. 184-200 (1958).
- Hansraj Gupta, Partitions - A Survey, Journal of Research of the National Bureau of Standards - B. Mathematical Sciences Vol. 74B, No. 1, January-March 1970. See section 6.1.
- D. H. Lehmer, On a conjecture of Ramanujan, J. London Math. Soc. 11, 114-118 (1936).
- D. H. Lehmer, On the Hardy-Ramanujan Series for the partition function,, J. London Math. Soc. 12, 171-176 (1937).
- G. N. Watson, A New Proof of the Rogers-Ramanujan Identities, J. London Math. Soc., V. s1-4, 1, Pages 4-9. (1929).
- G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Index entries for related partition-counting sequences
Programs
-
PARI
seq(x) = {my( n = -100, N=0); while(N < x, n += 343; if(valuation(numbpart(n),7) < valuation(24*n-1,7), print1(n", "); N++)) }; seq(100); \\ Gives the first 100 terms of the sequence.
Comments