This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340786 #15 Mar 16 2023 17:28:50 %S A340786 1,1,1,3,1,2,1,3,2,2,1,4,1,2,2,6,1,3,1,4,2,2,1,6,2,2,2,4,1,4,1,7,2,2, %T A340786 2,7,1,2,2,6,1,4,1,4,3,2,1,10,2,3,2,4,1,4,2,6,2,2,1,8,1,2,3,12,2,4,1, %U A340786 4,2,4,1,10,1,2,3,4,2,4,1,10,3,2,1,8,2,2 %N A340786 Number of factorizations of 4n into an even number of even factors > 1. %H A340786 Robert Israel, <a href="/A340786/b340786.txt">Table of n, a(n) for n = 1..10000</a> %e A340786 The a(n) factorizations for n = 6, 12, 24, 36, 60, 80, 500: %e A340786 4*6 6*8 2*48 2*72 4*60 4*80 40*50 %e A340786 2*12 2*24 4*24 4*36 6*40 8*40 4*500 %e A340786 4*12 6*16 6*24 8*30 10*32 8*250 %e A340786 2*2*2*6 8*12 8*18 10*24 16*20 10*200 %e A340786 2*2*4*6 12*12 12*20 2*160 20*100 %e A340786 2*2*2*12 2*2*6*6 2*120 2*2*2*40 2*1000 %e A340786 2*2*2*18 2*2*2*30 2*2*4*20 2*2*10*50 %e A340786 2*2*6*10 2*2*8*10 2*2*2*250 %e A340786 2*4*4*10 2*10*10*10 %e A340786 2*2*2*2*2*10 %p A340786 g:= proc(n, m, p) %p A340786 option remember; %p A340786 local F,r,x,i; %p A340786 # number of factorizations of n into even factors > m with number of factors == p (mod 2) %p A340786 if n = 1 then if p = 0 then return 1 else return 0 fi fi; %p A340786 if m > n or n::odd then return 0 fi; %p A340786 F:= sort(convert(select(t -> t > m and t::even, numtheory:-divisors(n)),list)); %p A340786 r:= 0; %p A340786 for x in F do %p A340786 for i from 1 while n mod x^i = 0 do %p A340786 r:= r + procname(n/x^i, x, (p+i) mod 2) %p A340786 od od; %p A340786 r %p A340786 end proc: %p A340786 f:= n -> g(4*n, 1, 0): %p A340786 map(f, [$1..100]); # _Robert Israel_, Mar 16 2023 %t A340786 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340786 Table[Length[Select[facs[4n],EvenQ[Length[#]]&&Select[#,OddQ]=={}&]],{n,100}] %o A340786 (PARI) %o A340786 A340786aux(n, m=n, p=0) = if(1==n, (0==p), my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A340786aux(n/d, d, 1-p))); (s)); %o A340786 A340786(n) = A340786aux(4*n); \\ _Antti Karttunen_, Apr 14 2022 %Y A340786 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340786 Positions of ones are 1 and A000040, or A008578. %Y A340786 A version for partitions is A027187 (A028260). %Y A340786 Allowing odd length gives A108501 (bisection of A340785). %Y A340786 Allowing odd factors gives A339846. %Y A340786 An odd version is A340102. %Y A340786 - Factorizations - %Y A340786 A001055 counts factorizations, with strict case A045778. %Y A340786 A316439 counts factorizations by product and length. %Y A340786 A340101 counts factorizations into odd factors. %Y A340786 A340653 counts balanced factorizations. %Y A340786 A340831/A340832 count factorizations with odd maximum/minimum. %Y A340786 - Even - %Y A340786 A027187 counts partitions of even maximum (A244990). %Y A340786 A058696 counts partitions of even numbers (A300061). %Y A340786 A067661 counts strict partitions of even length (A030229). %Y A340786 A236913 counts partitions of even length and sum (A340784). %Y A340786 A340601 counts partitions of even rank (A340602). %Y A340786 Cf. A001147, A001222, A001749, A035363, A050320, A066207, A066208, A160786, A174725, A320655, A320656, A339890, A340851. %K A340786 nonn %O A340786 1,4 %A A340786 _Gus Wiseman_, Jan 31 2021