This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340788 #9 Jan 30 2021 22:51:40 %S A340788 4,8,12,16,18,24,27,32,36,40,48,54,60,64,72,80,81,90,96,100,108,112, %T A340788 120,128,135,144,150,160,162,168,180,192,200,216,224,225,240,243,250, %U A340788 252,256,270,280,288,300,320,324,336,352,360,375,378,384,392,400,405 %N A340788 Heinz numbers of integer partitions of negative rank. %C A340788 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %C A340788 The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined. %H A340788 Freeman J. Dyson, <a href="https://doi.org/10.1016/S0021-9800(69)80006-2">A new symmetry of partitions</a>, Journal of Combinatorial Theory 7.1 (1969): 56-61. %H A340788 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %F A340788 For all terms A061395(a(n)) < A001222(a(n)). %e A340788 The sequence of partitions together with their Heinz numbers begins: %e A340788 4: (1,1) 80: (3,1,1,1,1) %e A340788 8: (1,1,1) 81: (2,2,2,2) %e A340788 12: (2,1,1) 90: (3,2,2,1) %e A340788 16: (1,1,1,1) 96: (2,1,1,1,1,1) %e A340788 18: (2,2,1) 100: (3,3,1,1) %e A340788 24: (2,1,1,1) 108: (2,2,2,1,1) %e A340788 27: (2,2,2) 112: (4,1,1,1,1) %e A340788 32: (1,1,1,1,1) 120: (3,2,1,1,1) %e A340788 36: (2,2,1,1) 128: (1,1,1,1,1,1,1) %e A340788 40: (3,1,1,1) 135: (3,2,2,2) %e A340788 48: (2,1,1,1,1) 144: (2,2,1,1,1,1) %e A340788 54: (2,2,2,1) 150: (3,3,2,1) %e A340788 60: (3,2,1,1) 160: (3,1,1,1,1,1) %e A340788 64: (1,1,1,1,1,1) 162: (2,2,2,2,1) %e A340788 72: (2,2,1,1,1) 168: (4,2,1,1,1) %t A340788 Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]<PrimeOmega[#]&] %Y A340788 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340788 These partitions are counted by A064173. %Y A340788 The odd case is A101707 is (A340929). %Y A340788 The even case is A101708 is (A340930). %Y A340788 The positive version is (A340787). %Y A340788 A001222 counts prime factors. %Y A340788 A061395 selects the maximum prime index. %Y A340788 A072233 counts partitions by sum and length. %Y A340788 A168659 counts partitions whose length is divisible by maximum. %Y A340788 A200750 counts partitions whose length and maximum are relatively prime. %Y A340788 - Rank - %Y A340788 A047993 counts partitions of rank 0 (A106529). %Y A340788 A063995/A105806 count partitions by Dyson rank. %Y A340788 A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521). %Y A340788 A101198 counts partitions of rank 1 (A325233). %Y A340788 A257541 gives the rank of the partition with Heinz number n. %Y A340788 A324518 counts partitions with rank equal to greatest part (A324517). %Y A340788 A324520 counts partitions with rank equal to least part (A324519). %Y A340788 A340601 counts partitions of even rank (A340602), with strict case A117192. %Y A340788 A340692 counts partitions of odd rank (A340603), with strict case A117193. %Y A340788 Cf. A003114, A006141, A039900, A056239, A096401, A112798, A117409, A316413, A325134, A326845, A340604, A340605, A340828. %K A340788 nonn %O A340788 1,1 %A A340788 _Gus Wiseman_, Jan 29 2021