This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340797 #52 Feb 04 2021 09:28:09 %S A340797 1,7,14,24,40,48,60,84,120,168,240,336,360,420,672,720,840,1260,1680, %T A340797 2520,3360,5040,7560,10080,15120,20160,25200,27720,30240,43680,45360, %U A340797 50400,55440,65520,83160,98280,110880,131040,166320,196560,221760,262080,277200,327600 %N A340797 Integers whose number of divisors that are Brazilian sets a new record. %C A340797 Corresponding number of Brazilian divisors: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 17, 18, 19, 26, ... %C A340797 Observation: the 58 consecutive highly composite numbers from A002182(12) = 240 to A002182(69) = 2095133040 (maybe more, according to conjectured terms) are also terms of this sequence. %H A340797 David A. Corneth, <a href="/A340797/b340797.txt">Table of n, a(n) for n = 1..85</a> %H A340797 David A. Corneth, <a href="/A340797/a340797.gp.txt">Conjectured terms</a> %H A340797 Wikipédia, <a href="https://fr.wikipedia.org/wiki/Nombre_br%C3%A9silien">Nombre brésilien</a> (in French). %H A340797 <a href="/index/Br#Brazilian_numbers">Index entries for sequences related to Brazilian numbers</a>. %e A340797 40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 4 are Brazilian: {8, 10, 20, 40}. No positive integer smaller than 40 has as many as four Brazilian divisors; hence 40 is a term. %t A340797 brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; d[n_] := DivisorSum[n, 1 &, brazQ[#] &]; dm = -1; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 1000}]; s (* _Amiram Eldar_, Jan 24 2021 *) %o A340797 (PARI) isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134 %o A340797 nbd(n) = sumdiv(n, d, isb(d)); \\ A340795 %o A340797 lista(nn) = {my(m=-1); for (n=1, nn, my(x = nbd(n)); if (x > m, print1(n, ", "); m = x););} \\ _Michel Marcus_, Jan 24 2021 %Y A340797 Cf. A002182, A125134, A220570, A308851, A340795, A340796. %Y A340797 Similar with: A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A340637 (Niven), A340638 (Zuckerman). %K A340797 nonn,base %O A340797 1,2 %A A340797 _Bernard Schott_, Jan 24 2021 %E A340797 a(20)-a(36) from _Michel Marcus_, Jan 24 2021 %E A340797 a(37)-a(44) from _Amiram Eldar_, Jan 24 2021