This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340811 #13 Feb 03 2021 21:48:56 %S A340811 1,1,1,1,1,1,1,1,1,2,1,1,1,2,3,1,1,1,3,5,6,1,1,1,3,8,12,11,1,1,1,4,11, %T A340811 32,39,23,1,1,1,4,16,56,141,136,47,1,1,1,5,20,103,359,749,529,106,1,1, %U A340811 1,5,26,158,799,2597,4304,2171,235,1,1,1,6,32,245,1539,7286,20386,26492,9368,551 %N A340811 Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal 2-trees with n polygons, n >= 0, k >= 2. %C A340811 See section 4 and table 1 in the Labelle reference. %H A340811 Andrew Howroyd, <a href="/A340811/b340811.txt">Table of n, a(n) for n = 0..1325</a> %H A340811 G. Labelle, C. Lamathe and P. Leroux, <a href="http://arXiv.org/abs/math.CO/0312424">Labeled and unlabeled enumeration of k-gonal 2-trees</a>, arXiv:math/0312424 [math.CO], Dec 23 2003. %e A340811 Array begins: %e A340811 ======================================================= %e A340811 n\k | 2 3 4 5 6 7 8 9 %e A340811 ----+-------------------------------------------------- %e A340811 0 | 1 1 1 1 1 1 1 1 ... %e A340811 1 | 1 1 1 1 1 1 1 1 ... %e A340811 2 | 1 1 1 1 1 1 1 1 ... %e A340811 3 | 2 2 3 3 4 4 5 5 ... %e A340811 4 | 3 5 8 11 16 20 26 32 ... %e A340811 5 | 6 12 32 56 103 158 245 343 ... %e A340811 6 | 11 39 141 359 799 1539 2737 4505 ... %e A340811 7 | 23 136 749 2597 7286 16970 35291 66603 ... %e A340811 8 | 47 529 4304 20386 71094 199879 483819 1045335 ... %e A340811 ... %o A340811 (PARI) %o A340811 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A340811 B(n,k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p} %o A340811 C(p,k)={p(1) - x*p(1)^k + x*sumdiv(k, d, eulerphi(d)*p(d)^(k/d))/k} %o A340811 S(p,k)={my(p2=p(2)); if(k%2, 1+x*Ser(EulerT(Vec(x*p2^(k\2) + x^2*(p2^(k-1) - p(4)^(k\2))/2 ))), my(r=p2^(k/2-1), q=1+O(x)); while(serprec(q,x)<serprec(p2,x), my(t=r*q); q=1+x*Ser(EulerT(Vec(x*t + x^2*subst(p(1)^(k-1) - t, x, x^2)/2)))); q + x*p2^(k/2-1)*(p2-q^2)/2)} %o A340811 U(n,k)={my(b=B(n,k), p(d)=subst(b + O(x*x^(n\d)), x, x^d)); Vec(C(p,k) + S(p,k))/2} %o A340811 { Mat(vector(7, k, U(7, k+1)~)) } %Y A340811 Columns 2..12 are A000055, A054581, A094610, A094611, A094637, A094651, A094652, A094653, A094654, A094655, A094656. %Y A340811 Cf. A340812 (with oriented polygons). %K A340811 nonn,tabl %O A340811 0,10 %A A340811 _Andrew Howroyd_, Feb 02 2021