This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340814 #12 Feb 03 2021 21:54:06 %S A340814 1,1,1,1,1,2,1,1,3,4,1,1,4,10,9,1,1,5,19,39,20,1,1,6,31,107,160,48,1, %T A340814 1,7,46,229,647,702,115,1,1,8,64,421,1832,4167,3177,286,1,1,9,85,699, %U A340814 4191,15583,27847,14830,719,1,1,10,109,1079,8325,44322,137791,191747,70678,1842 %N A340814 Array read by antidiagonals: T(n,k) is the number of unlabeled oriented edge-rooted k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2. %C A340814 See section 2 of the Labelle reference. %H A340814 Andrew Howroyd, <a href="/A340814/b340814.txt">Table of n, a(n) for n = 0..1325</a> %H A340814 G. Labelle, C. Lamathe and P. Leroux, <a href="http://arXiv.org/abs/math.CO/0312424">Labeled and unlabeled enumeration of k-gonal 2-trees</a>, arXiv:math/0312424 [math.CO], Dec 23 2003. %F A340814 Column k is the Euler transform of column k+1 of A242249. %F A340814 G.f. of column k: A(x) satisfies A(x) = exp(Sum_{i>0} x^i*A(x^i)^(k-1)/i). %e A340814 Array begins: %e A340814 ============================================================ %e A340814 n\k | 2 3 4 5 6 7 8 %e A340814 ----+------------------------------------------------------- %e A340814 0 | 1 1 1 1 1 1 1 ... %e A340814 1 | 1 1 1 1 1 1 1 ... %e A340814 2 | 2 3 4 5 6 7 8 ... %e A340814 3 | 4 10 19 31 46 64 85 ... %e A340814 4 | 9 39 107 229 421 699 1079 ... %e A340814 5 | 20 160 647 1832 4191 8325 14960 ... %e A340814 6 | 48 702 4167 15583 44322 105284 220193 ... %e A340814 7 | 115 3177 27847 137791 487662 1385888 3374267 ... %e A340814 8 | 286 14830 191747 1255202 5527722 18795035 53275581 ... %e A340814 ... %o A340814 (PARI) \\ here B(n,k) gives g.f. of k-th column. %o A340814 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A340814 B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p} %o A340814 { Mat(vector(7, k, Col(B(7, k+1)))) } %Y A340814 Columns k=2..6 are A000081(n+1), A005750(n+1), A052751, A052773, A052781. %Y A340814 Cf. A242249, A340811, A340812. %K A340814 nonn,tabl %O A340814 0,6 %A A340814 _Andrew Howroyd_, Feb 02 2021