This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340828 #10 Feb 08 2021 03:05:59 %S A340828 1,1,2,1,2,3,3,2,4,5,6,6,7,8,11,10,13,17,18,21,24,27,30,35,39,46,53, %T A340828 61,68,79,87,97,110,123,139,157,175,196,222,247,278,312,347,385,433, %U A340828 476,531,586,651,720,800,883,979,1085,1200,1325,1464,1614,1777 %N A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length. %H A340828 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000010">St000010: The length of the partition.</a> %H A340828 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000147">St000147: The largest part of an integer partition.</a> %H A340828 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000784">St000784: The maximum of the length and the largest part of the integer partition.</a> %e A340828 The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16): %e A340828 1 2 3 4 5 6 7 8 9 A B C D E F G %e A340828 21 41 42 43 62 63 64 65 84 85 86 87 A6 %e A340828 321 61 81 82 83 A2 A3 A4 A5 C4 %e A340828 621 631 A1 642 C1 C2 C3 E2 %e A340828 4321 632 651 643 653 E1 943 %e A340828 641 921 652 932 654 952 %e A340828 931 941 942 961 %e A340828 8321 951 C31 %e A340828 C21 8431 %e A340828 8421 8521 %e A340828 54321 %t A340828 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}] %Y A340828 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340828 The non-strict version is A168659 (A340609/A340610). %Y A340828 A018818 counts partitions into divisors (A326841). %Y A340828 A047993 counts balanced partitions (A106529). %Y A340828 A064173 counts partitions of positive/negative rank (A340787/A340788). %Y A340828 A067538 counts partitions whose length/max divides sum (A316413/A326836). %Y A340828 A072233 counts partitions by sum and length, with strict case A008289. %Y A340828 A096401 counts strict partition with length equal to minimum. %Y A340828 A102627 counts strict partitions with length dividing sum. %Y A340828 A326842 counts partitions whose length and parts all divide sum (A326847). %Y A340828 A326850 counts strict partitions whose maximum part divides sum. %Y A340828 A326851 counts strict partitions with length and maximum dividing sum. %Y A340828 A340829 counts strict partitions with Heinz number divisible by sum. %Y A340828 A340830 counts strict partitions with all parts divisible by length. %Y A340828 Cf. A003114, A006141, A064174, A117409, A143773 (A316428), A200750, A326843 (A326837), A330950 (A324851). %K A340828 nonn %O A340828 1,3 %A A340828 _Gus Wiseman_, Feb 01 2021