This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340830 #8 Feb 03 2021 09:09:08 %S A340830 1,1,1,1,1,2,1,2,1,3,1,3,1,4,1,4,1,6,1,5,2,6,1,8,1,7,4,7,1,12,1,8,6,9, %T A340830 1,16,1,10,9,11,1,21,1,12,13,12,1,28,1,13,17,16,1,33,1,19,22,15,1,45, %U A340830 1,16,28,25,1,47,1,28,34,18 %N A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts. %F A340830 a(n) = Sum_{d|n} A008289(n/d, d). %e A340830 The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30: %e A340830 1 6 10 14 18 20 24 26 30 %e A340830 4,2 6,4 8,6 10,8 12,8 16,8 18,8 22,8 %e A340830 8,2 10,4 12,6 14,6 18,6 20,6 24,6 %e A340830 12,2 14,4 16,4 20,4 22,4 26,4 %e A340830 16,2 18,2 22,2 24,2 28,2 %e A340830 9,6,3 14,10 14,12 16,14 %e A340830 12,9,3 16,10 18,12 %e A340830 15,6,3 20,10 %e A340830 15,9,6 %e A340830 18,9,3 %e A340830 21,6,3 %e A340830 15,12,3 %t A340830 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}] %Y A340830 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340830 The non-strict case is A143773 (A316428). %Y A340830 The case where length divides sum also is A340827. %Y A340830 The version for factorizations is A340851. %Y A340830 Factorization of this type are counted by A340853. %Y A340830 A018818 counts partitions into divisors (A326841). %Y A340830 A047993 counts balanced partitions (A106529). %Y A340830 A067538 counts partitions whose length/max divide sum (A316413/A326836). %Y A340830 A072233 counts partitions by sum and length, with strict case A008289. %Y A340830 A102627 counts strict partitions whose length divides sum. %Y A340830 A326850 counts strict partitions whose maximum part divides sum. %Y A340830 A326851 counts strict partitions with length and maximum dividing sum. %Y A340830 A340828 counts strict partitions with length divisible by maximum. %Y A340830 A340829 counts strict partitions with Heinz number divisible by sum. %Y A340830 Cf. A114638, A168659, A326641, A326843 (A326837), A326849, A326852 (A326838), A330950 (A324851), A340852. %K A340830 nonn %O A340830 1,6 %A A340830 _Gus Wiseman_, Feb 02 2021