This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340832 #9 Dec 13 2021 16:15:05 %S A340832 0,0,1,0,1,0,1,0,2,0,1,1,1,0,2,0,1,1,1,0,2,0,1,1,2,0,3,0,1,2,1,0,2,0, %T A340832 2,2,1,0,2,1,1,1,1,0,4,0,1,2,2,1,2,0,1,2,2,1,2,0,1,3,1,0,4,0,2,1,1,0, %U A340832 2,2,1,3,1,0,4,0,2,1,1,1,5,0,1,3,2,0,2,0,1,5,2,0,2,0,2,2,1,1,4,1,1,1,1,0,5,0,1,6 %N A340832 Number of factorizations of n into factors > 1 with odd least factor. %H A340832 Antti Karttunen, <a href="/A340832/b340832.txt">Table of n, a(n) for n = 1..20000</a> %e A340832 The a(n) factorizations for n = 45, 108, 135, 180, 252: %e A340832 (45) (3*36) (135) (3*60) (3*84) %e A340832 (5*9) (9*12) (3*45) (5*36) (7*36) %e A340832 (3*15) (3*4*9) (5*27) (9*20) (9*28) %e A340832 (3*3*5) (3*6*6) (9*15) (5*6*6) (3*3*28) %e A340832 (3*3*12) (3*5*9) (3*3*20) (3*4*21) %e A340832 (3*3*3*4) (3*3*15) (3*4*15) (3*6*14) %e A340832 (3*3*3*5) (3*5*12) (3*7*12) %e A340832 (3*6*10) (3*3*4*7) %e A340832 (3*3*4*5) %t A340832 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340832 Table[Length[Select[facs[n],OddQ@*Min]],{n,100}] %o A340832 (PARI) A340832(n, m=n, fc=1) = if(1==n, (m%2)&&!fc, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A340832(n/d, d, 0*fc))); (s)); \\ _Antti Karttunen_, Dec 13 2021 %Y A340832 Positions of 0's are A340854. %Y A340832 Positions of nonzero terms are A340855. %Y A340832 The version for partitions is A026804. %Y A340832 Odd-length factorizations are counted by A339890. %Y A340832 The version looking at greatest factor is A340831. %Y A340832 - Factorizations - %Y A340832 A001055 counts factorizations. %Y A340832 A045778 counts strict factorizations. %Y A340832 A316439 counts factorizations by product and length. %Y A340832 A340101 counts factorizations into odd factors, odd-length case A340102. %Y A340832 A340607 counts factorizations with odd length and greatest factor. %Y A340832 A340653 counts balanced factorizations. %Y A340832 - Odd - %Y A340832 A000009 counts partitions into odd parts. %Y A340832 A026424 lists numbers with odd Omega. %Y A340832 A027193 counts partitions of odd length. %Y A340832 A058695 counts partitions of odd numbers (A300063). %Y A340832 A066208 lists numbers with odd-indexed prime factors. %Y A340832 A067659 counts strict partitions of odd length (A030059). %Y A340832 A174726 counts ordered factorizations of odd length. %Y A340832 A244991 lists numbers whose greatest prime index is odd. %Y A340832 A340692 counts partitions of odd rank. %Y A340832 Cf. A050320, A160786, A340385, A340596, A340599, A340654, A340655, A340931. %K A340832 nonn %O A340832 1,9 %A A340832 _Gus Wiseman_, Feb 04 2021 %E A340832 Data section extended up to 108 terms by _Antti Karttunen_, Dec 13 2021