cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340833 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n).

This page as a plain text file.
%I A340833 #66 Nov 01 2021 01:08:33
%S A340833 4,6,7,10,9,12,11,14,14,15,13,18,13,17,20,22,15,22,15,22,23,21,17,26,
%T A340833 22,21,25,28,19,30,19,30,27,23,26,32,21,25,29,34,21,34,21,33,36,27,23,
%U A340833 38,30,38,31,35,23,38,35,42,33,29,25,42,25,29,42,42,37,44,27
%N A340833 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n).
%C A340833 If A237271(n) is odd then a(n) is even.
%C A340833 If A237271(n) is even then a(n) is odd.
%C A340833 The above sentences arise that the diagram is always symmetric for any value of n hence the number of edges is always an even number. Also from Euler's formula.
%C A340833 Indices of odd terms give A071561.
%C A340833 Indices of even terms give A071562.
%C A340833 For another version with subparts see A340847 from which first differs at a(6).
%C A340833 The parity of this sequence is also the characteristic function of numbers that have no middle divisors (cf. A348327). - _Omar E. Pol_, Oct 14 2021
%H A340833 Michael De Vlieger, <a href="/A340833/b340833.txt">Table of n, a(n) for n = 1..10000</a>
%H A340833 Michael De Vlieger, <a href="/A340833/a340833.png">Log-log scatterplot of a(n)</a> for n=1..10^4, accentuating a(m) for m=1..2^8 for clarity, and labeling a(k) for k=1..24.
%F A340833 a(n) = A340846(n) - A237271(n) + 1 (Euler's formula).
%e A340833 Illustration of initial terms:
%e A340833 .                                                          _ _ _ _
%e A340833 .                                            _ _ _        |_ _ _  |_
%e A340833 .                                _ _ _      |_ _ _|             |   |_
%e A340833 .                      _ _      |_ _  |_          |_ _          |_ _  |
%e A340833 .              _ _    |_ _|_        |_  |           | |             | |
%e A340833 .        _    |_  |       | |         | |           | |             | |
%e A340833 .       |_|     |_|       |_|         |_|           |_|             |_|
%e A340833 .
%e A340833 n:       1      2        3          4           5               6
%e A340833 a(n):    4      6        7         10           9              12
%e A340833 .
%e A340833 For n = 6 the diagram has 12 vertices so a(6) = 12.
%e A340833 On the other hand the diagram has 12 edges and only one part or region, so applying Euler's formula we have that a(6) = 12 - 1 + 1 = 12.
%e A340833 .                                                  _ _ _ _ _
%e A340833 .                            _ _ _ _ _            |_ _ _ _ _|
%e A340833 .        _ _ _ _            |_ _ _ _  |                     |_ _
%e A340833 .       |_ _ _ _|                   | |_                    |_  |
%e A340833 .               |_                  |_  |_ _                  |_|_ _
%e A340833 .                 |_ _                |_ _  |                     | |
%e A340833 .                   | |                   | |                     | |
%e A340833 .                   | |                   | |                     | |
%e A340833 .                   | |                   | |                     | |
%e A340833 .                   |_|                   |_|                     |_|
%e A340833 .
%e A340833 n:              7                    8                      9
%e A340833 a(n):          11                   14                     14
%e A340833 .
%e A340833 For n = 9 the diagram has 14 vertices so a(9) = 14.
%e A340833 On the other hand the diagram has 16 edges and three parts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14.
%e A340833 Another way for the illustration of initial terms is as follows:
%e A340833 --------------------------------------------------------------------------
%e A340833 .  n  a(n)                             Diagram
%e A340833 --------------------------------------------------------------------------
%e A340833             _
%e A340833    1   4   |_|  _
%e A340833               _| |  _
%e A340833    2   6     |_ _| | |  _
%e A340833                 _ _|_| | |  _
%e A340833    3   7       |_ _|  _| | | |  _
%e A340833                   _ _|  _| | | | |  _
%e A340833    4  10         |_ _ _|  _|_| | | | |  _
%e A340833                     _ _ _|  _ _| | | | | |  _
%e A340833    5   9           |_ _ _| |    _| | | | | | |  _
%e A340833                       _ _ _|  _|  _|_| | | | | | |  _
%e A340833    6  12             |_ _ _ _|  _|  _ _| | | | | | | |  _
%e A340833                         _ _ _ _|  _|  _ _| | | | | | | | |  _
%e A340833    7  11               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
%e A340833                           _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
%e A340833    8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
%e A340833                             _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
%e A340833    9  14                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
%e A340833                               _ _ _ _ _| |  _|  _|    _ _| | | | | | | | |
%e A340833   10  15                     |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | |
%e A340833                                 _ _ _ _ _ _| |      _| |  _ _ _| | | | | |
%e A340833   11  13                       |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | |
%e A340833                                   _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
%e A340833   12  18                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
%e A340833                                     _ _ _ _ _ _ _| |  _| |    _| |  _ _ _|
%e A340833   13  13                           |_ _ _ _ _ _ _| | |  _|  _|  _| |
%e A340833                                       _ _ _ _ _ _ _| | |_ _|  _|  _|
%e A340833   14  17                             |_ _ _ _ _ _ _ _| |  _ _|  _|
%e A340833                                         _ _ _ _ _ _ _ _| |  _ _|
%e A340833   15  20                               |_ _ _ _ _ _ _ _| | |
%e A340833                                           _ _ _ _ _ _ _ _| |
%e A340833   16  22                                 |_ _ _ _ _ _ _ _ _|
%e A340833 ...
%t A340833 MapAt[# + 1 &, #, 1] &@ Map[Length@ Union[Join @@ #] - 1 &, Partition[Prepend[#, {{0, 0}}], 2, 1]] &@ Table[{{0, 0}}~Join~Accumulate[Join[#, Reverse[Reverse /@ (-1*#)]]] &@ MapIndexed[Which[#2 == 1, {#1, 0}, Mod[#2, 2] == 0, {0, #1}, True, {-#1, 0}] & @@ {#1, First[#2]} &, If[Length[#] == 0, {n, n}, Join[{n}, #, {n - Total[#]}]]] &@ Differences[n - Array[(Ceiling[(n + 1)/# - (# + 1)/2]) &, Floor[(Sqrt[8 n + 1] - 1)/2]]], {n, 67}] (* _Michael De Vlieger_, Oct 27 2021 *)
%Y A340833 Parity gives A348327.
%Y A340833 Cf. A237271 (number of parts or regions).
%Y A340833 Cf. A340846 (number of edges).
%Y A340833 Cf. A340847 (number of vertices in the diagram with subparts).
%Y A340833 Cf. A294723 (total number of vertices in the unified diagram).
%Y A340833 Cf. A239931-A239934 (illustration of first 32 diagrams).
%Y A340833 Cf. A000203, A071561, A071562, A196020, A236104, A235791, A237048, A237270, A237590, A237591, A237593, A239660, A245092, A262626, A340848.
%K A340833 nonn,look
%O A340833 1,1
%A A340833 _Omar E. Pol_, Jan 23 2021
%E A340833 Terms a(33) and beyond from _Michael De Vlieger_, Oct 27 2021