This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340834 #64 Nov 17 2024 18:55:50 %S A340834 12,1222,1437286,3441373,1032893366969 %N A340834 Fixed points of A341885. %C A340834 Numbers n such that A341885(n) = n. %C A340834 Includes 2*p*q if p and q are primes such that p^2-4*p*q+q^2+p+q+6 = 0. This includes 12 for p=2, q=3, 1222 for p=13,q=47, 1437286 for p=439, q=1637, and 76498942675946443126 for p=3201392659, q=11947760057. %C A340834 Another term: 6538810199342921107066977217325653068509 = 13 * 4401624135264074597*114272683103433355069. - _Chai Wah Wu_, Feb 25 2021 %F A340834 A341885(a(n)) = a(n). %e A340834 a(2) = 1222 is a term because 1222 = 2*13*47 and A341885(1222) = 2*3/2 + 13*14/2 + 47*48/2 = 1222. %p A340834 f:= proc(n) local F,t; %p A340834 F:= ifactors(n)[2]; %p A340834 add(t[1]*(t[1]+1)/2*t[2],t=F) %p A340834 end proc: %p A340834 select(t -> f(t)=t, [$1..4000000]); %t A340834 Block[{a = {}}, Monitor[Do[If[# == i, AppendTo[a, i]] &@ Total[PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[i]]], {i, 2, 4*10^6}], i]; a] (* _Michael De Vlieger_, Feb 22 2021 *) %o A340834 (Python) %o A340834 from sympy import factorint %o A340834 A340834_list = [n for n in range(2,10**4) if n == sum(k*m*(m+1)//2 for m,k in factorint(n).items())] # _Chai Wah Wu_, Feb 25 2021 %Y A340834 Cf. A341885. %K A340834 nonn,more %O A340834 1,1 %A A340834 _J. M. Bergot_ and _Robert Israel_, Feb 22 2021 %E A340834 a(5) from _Martin Ehrenstein_, Mar 07 2021