This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340843 #16 Jan 25 2021 19:03:05 %S A340843 1933,3391,32687,78623,104087,109891,112103,120283,123127,135469, %T A340843 136217,161983,162209,162391,163819,179779,193261,198613,198901, %U A340843 301211,316819,316891,382021,389161,712631,721321,726487,738349,780401,784627,902261,918361,918613,943837,964531,977971,1002247 %N A340843 Emirps p such that p+(sum of digits of p) and reverse(p)+(sum of digits of p) are emirps. %H A340843 Robert Israel, <a href="/A340843/b340843.txt">Table of n, a(n) for n = 1..1000</a> %e A340843 a(3) = 32687 is an emirp because 32687 and 78623 are distinct primes. The sum of digits of 32687 is 26. 32687+26 = 32713 and 78623+26 = 78649 are emirps because 32713 and 31723 are distinct primes, as are 78649 and 94687. %p A340843 revdigs:= proc(n) local L,i; %p A340843 L:= convert(n,base,10); %p A340843 add(10^(i-1)*L[-i],i=1..nops(L)) %p A340843 end proc: %p A340843 filter:= proc(n) local r,t,n2,n3; %p A340843 if not isprime(n) then return false fi; %p A340843 r:= revdigs(n); %p A340843 if r = n or not isprime(r) then return false fi; %p A340843 t:= convert(convert(n,base,10),`+`); %p A340843 for n2 in [n+t, r+t] do %p A340843 if not isprime(n2) then return false fi; %p A340843 r:= revdigs(n2); %p A340843 if r = n2 or not isprime(r) then return false fi; %p A340843 od; %p A340843 true %p A340843 end proc: %p A340843 select(filter, [seq(i,i=13..10^6,2)]); %o A340843 (Python) %o A340843 from sympy import isprime %o A340843 def sd(n): return sum(map(int, str(n))) %o A340843 def emirp(n): %o A340843 if not isprime(n): return False %o A340843 revn = int(str(n)[::-1]) %o A340843 if n == revn: return False %o A340843 return isprime(revn) %o A340843 def ok(n): %o A340843 if not emirp(n): return False %o A340843 if not emirp(n + sd(n)): return False %o A340843 revn = int(str(n)[::-1]) %o A340843 return emirp(revn + sd(revn)) %o A340843 def aupto(nn): return [m for m in range(1, nn+1) if ok(m)] %o A340843 print(aupto(920000)) # _Michael S. Branicky_, Jan 24 2021 %Y A340843 Cf. A006567. Contained in A340842. %K A340843 nonn,base %O A340843 1,1 %A A340843 _J. M. Bergot_ and _Robert Israel_, Jan 23 2021