cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340846 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n).

This page as a plain text file.
%I A340846 #33 Oct 28 2021 20:18:35
%S A340846 4,6,8,10,10,12,12,14,16,16,14,18,14,18,22,22,16,22,16,22,26,22,18,26,
%T A340846 24,22,28,28,20,30,20,30,30,24,28,32,22,26,32,34,22,34,22,34,38,28,24,
%U A340846 38,32,40,34,36,24,38,38,42,36,30,26,42,26,30,46,42,40,44,28
%N A340846 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n).
%C A340846 Since the diagram is symmetric so all terms are even numbers.
%C A340846 For another version with subparts see A340848 from which first differs at a(6).
%F A340846 a(n) = A340833(n) + A237271(n) - 1 (Euler's formula).
%e A340846 Illustration of initial terms:
%e A340846 .                                                          _ _ _ _
%e A340846 .                                            _ _ _        |_ _ _  |_
%e A340846 .                                _ _ _      |_ _ _|             |   |_
%e A340846 .                      _ _      |_ _  |_          |_ _          |_ _  |
%e A340846 .              _ _    |_ _|_        |_  |           | |             | |
%e A340846 .        _    |_  |       | |         | |           | |             | |
%e A340846 .       |_|     |_|       |_|         |_|           |_|             |_|
%e A340846 .
%e A340846 n:       1      2        3          4           5               6
%e A340846 a(n):    4      6        8         10          10              12
%e A340846 .
%e A340846 For n = 6 the diagram has 12 edges so a(6) = 12.
%e A340846 On the other hand the diagram has 12 vertices and only one part or region, so applying Euler's formula we have that a(6) = 12 + 1 - 1 = 12.
%e A340846 .                                                  _ _ _ _ _
%e A340846 .                            _ _ _ _ _            |_ _ _ _ _|
%e A340846 .        _ _ _ _            |_ _ _ _  |                     |_ _
%e A340846 .       |_ _ _ _|                   | |_                    |_  |
%e A340846 .               |_                  |_  |_ _                  |_|_ _
%e A340846 .                 |_ _                |_ _  |                     | |
%e A340846 .                   | |                   | |                     | |
%e A340846 .                   | |                   | |                     | |
%e A340846 .                   | |                   | |                     | |
%e A340846 .                   |_|                   |_|                     |_|
%e A340846 .
%e A340846 n:              7                    8                      9
%e A340846 a(n):          12                   14                     16
%e A340846 .
%e A340846 For n = 9 the diagram has 16 edges so a(9) = 16.
%e A340846 On the other hand the diagram has 14 vertices and three parts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16.
%e A340846 Another way for the illustration of initial terms is as follows:
%e A340846 --------------------------------------------------------------------------
%e A340846 .  n  a(n)                             Diagram
%e A340846 --------------------------------------------------------------------------
%e A340846             _
%e A340846    1   4   |_|  _
%e A340846               _| |  _
%e A340846    2   6     |_ _| | |  _
%e A340846                 _ _|_| | |  _
%e A340846    3   8       |_ _|  _| | | |  _
%e A340846                   _ _|  _| | | | |  _
%e A340846    4  10         |_ _ _|  _|_| | | | |  _
%e A340846                     _ _ _|  _ _| | | | | |  _
%e A340846    5  10           |_ _ _| |    _| | | | | | |  _
%e A340846                       _ _ _|  _|  _|_| | | | | | |  _
%e A340846    6  12             |_ _ _ _|  _|  _ _| | | | | | | |  _
%e A340846                         _ _ _ _|  _|  _ _| | | | | | | | |  _
%e A340846    7  12               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
%e A340846                           _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
%e A340846    8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
%e A340846                             _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
%e A340846    9  16                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
%e A340846                               _ _ _ _ _| |  _|  _|    _ _| | | | | | | | |
%e A340846   10  16                     |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | |
%e A340846                                 _ _ _ _ _ _| |      _| |  _ _ _| | | | | |
%e A340846   11  14                       |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | |
%e A340846                                   _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
%e A340846   12  18                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
%e A340846                                     _ _ _ _ _ _ _| |  _| |    _| |  _ _ _|
%e A340846   13  14                           |_ _ _ _ _ _ _| | |  _|  _|  _| |
%e A340846                                       _ _ _ _ _ _ _| | |_ _|  _|  _|
%e A340846   14  18                             |_ _ _ _ _ _ _ _| |  _ _|  _|
%e A340846                                         _ _ _ _ _ _ _ _| |  _ _|
%e A340846   15  22                               |_ _ _ _ _ _ _ _| | |
%e A340846                                           _ _ _ _ _ _ _ _| |
%e A340846   16  22                                 |_ _ _ _ _ _ _ _ _|
%e A340846 ...
%Y A340846 Cf. A237271 (number of parts or regions).
%Y A340846 Cf. A340833 (number of vertices).
%Y A340846 Cf. A340848 (number of edges in the diagram with subparts).
%Y A340846 Cf. A317109 (total number of edges in the unified diagram).
%Y A340846 Cf. A239931-A239934 (illustration of first 32 diagrams).
%Y A340846 Cf. A000203, A005843, A196020, A236104, A235791, A237048, A237270, A237590, A237591, A237593, A239660, A245092, A262626, A340847.
%K A340846 nonn
%O A340846 1,1
%A A340846 _Omar E. Pol_, Jan 24 2021
%E A340846 More terms from _Omar E. Pol_, Oct 28 2021