cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340847 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n) with subparts.

This page as a plain text file.
%I A340847 #37 May 10 2025 16:19:15
%S A340847 4,6,7,10,9,13,11,14,14,15,13,23,13,17,21,22,15,26,15,25,23,21,27,35,
%T A340847 22,21,25,29,19,41,19,30
%N A340847 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n) with subparts.
%C A340847 Theorem: Indices of even terms give A028982. Indices of odd terms give A028983.
%C A340847 If A001227(n) is odd then a(n) is even.
%C A340847 If A001227(n) is even then a(n) is odd.
%C A340847 The above sentences arise that the diagram is always symmetric for any value of n hence the number of edges is always an even number. Also from Euler's formula.
%C A340847 For another version see A340833 from which first differs at a(6).
%C A340847 For the definition of subparts see A279387. For more information about the subparts see also A237271, A280850, A280851, A296508, A335616.
%C A340847 Note that in this version of the diagram of the symmetric representation of sigma(n) all regions are called "subparts". The number of subparts equals A001227(n).
%F A340847 a(n) = A340848(n) - A001227(n) + 1 (Euler's formula).
%e A340847 Illustration of initial terms:
%e A340847 .                                                          _ _ _ _
%e A340847 .                                            _ _ _        |_ _ _  |_
%e A340847 .                                _ _ _      |_ _ _|             | |_|_
%e A340847 .                      _ _      |_ _  |_          |_ _          |_ _  |
%e A340847 .              _ _    |_ _|_        |_  |           | |             | |
%e A340847 .        _    |_  |       | |         | |           | |             | |
%e A340847 .       |_|     |_|       |_|         |_|           |_|             |_|
%e A340847 .
%e A340847 n:       1      2        3          4           5               6
%e A340847 a(n):    4      6        7         10           9              13
%e A340847 .
%e A340847 For n = 6 the diagram has 13 vertices so a(6) = 13.
%e A340847 On the other hand the diagram has 14 edges and two subparts or regions, so applying Euler's formula we have that a(6) = 14 - 2 + 1 = 13.
%e A340847 .
%e A340847 .                                                  _ _ _ _ _
%e A340847 .                            _ _ _ _ _            |_ _ _ _ _|
%e A340847 .        _ _ _ _            |_ _ _ _  |                     |_ _
%e A340847 .       |_ _ _ _|                   | |_                    |_  |
%e A340847 .               |_                  |_  |_ _                  |_|_ _
%e A340847 .                 |_ _                |_ _  |                     | |
%e A340847 .                   | |                   | |                     | |
%e A340847 .                   | |                   | |                     | |
%e A340847 .                   | |                   | |                     | |
%e A340847 .                   |_|                   |_|                     |_|
%e A340847 .
%e A340847 n:              7                    8                      9
%e A340847 a(n):          11                   14                     14
%e A340847 .
%e A340847 For n = 9 the diagram has 14 vertices so a(9) = 14.
%e A340847 On the other hand the diagram has 16 edges and three subparts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14.
%e A340847 Another way for the illustration of initial terms is as follows:
%e A340847 --------------------------------------------------------------------------
%e A340847 .  n  a(n)                             Diagram
%e A340847 --------------------------------------------------------------------------
%e A340847             _
%e A340847    1   4   |_|  _
%e A340847               _| |  _
%e A340847    2   6     |_ _| | |  _
%e A340847                 _ _|_| | |  _
%e A340847    3   7       |_ _|  _| | | |  _
%e A340847                   _ _|  _| | | | |  _
%e A340847    4  10         |_ _ _|  _|_| | | | |  _
%e A340847                     _ _ _|  _ _| | | | | |  _
%e A340847    5   9           |_ _ _| |  _ _| | | | | | |  _
%e A340847                       _ _ _| |_|  _|_| | | | | | |  _
%e A340847    6  13             |_ _ _ _|  _|  _ _| | | | | | | |  _
%e A340847                         _ _ _ _|  _|  _ _| | | | | | | | |  _
%e A340847    7  11               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
%e A340847                           _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
%e A340847    8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
%e A340847                             _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
%e A340847    9  14                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
%e A340847                               _ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | |
%e A340847   10  15                     |_ _ _ _ _ _| |  _|  _| |  _ _|_| | | | | | |
%e A340847                                 _ _ _ _ _ _| |  _|  _| |  _ _ _| | | | | |
%e A340847   11  13                       |_ _ _ _ _ _| | |_ _|  _| |  _ _ _| | | | |
%e A340847                                   _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
%e A340847   12  23                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
%e A340847                                     _ _ _ _ _ _ _| |  _| |  _ _| |  _ _ _|
%e A340847   13  13                           |_ _ _ _ _ _ _| | |  _| |_|  _| |
%e A340847                                       _ _ _ _ _ _ _| | |_ _|  _|  _|
%e A340847   14  17                             |_ _ _ _ _ _ _ _| |  _ _|  _|
%e A340847                                         _ _ _ _ _ _ _ _| |  _ _|
%e A340847   15  21                               |_ _ _ _ _ _ _ _| | |
%e A340847                                           _ _ _ _ _ _ _ _| |
%e A340847   16  22                                 |_ _ _ _ _ _ _ _ _|
%e A340847 ...
%Y A340847 Cf. A001227 (number of subparts or regions).
%Y A340847 Cf. A340848 (number of edges).
%Y A340847 Cf. A340833 (numer of vertices in the diagram only with parts).
%Y A340847 Cf. A317293 (total number of vertices in the unified diagram).
%Y A340847 Cf. A000203, A028982, A028983, A060831, A196020, A236104, A235791, A237048, A237270, A237591, A237593, A239660, A245092, A262626, A279387, A280850, A280851, A296508, A335616, A340846.
%K A340847 nonn,more
%O A340847 1,1
%A A340847 _Omar E. Pol_, Jan 24 2021