cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340848 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n) with subparts.

This page as a plain text file.
%I A340848 #34 Feb 03 2021 23:37:04
%S A340848 4,6,8,10,10,14,12,14,16,16,14,24,14,18,24,22,16,28,16,26,26,22,18,36,
%T A340848 24,22,28,30,20,44,20,30
%N A340848 a(n) is the number of edges in the diagram of the symmetric representation of sigma(n) with subparts.
%C A340848 Since the diagram is symmetric so all terms are even numbers.
%C A340848 For another version see A340846 from which first differs at a(6).
%C A340848 For the definition of subparts see A279387. For more information about the subparts see also A237271, A280850, A280851, A296508, A335616.
%C A340848 Note that in this version of the diagram of the symmetric representation of sigma(n) all regions are called "subparts". The number of subparts equals A001227(n).
%F A340848 a(n) = A340847(n) + A001227(n) - 1 (Euler's formula).
%e A340848 Illustration of initial terms:
%e A340848 .                                                          _ _ _ _
%e A340848 .                                            _ _ _        |_ _ _  |_
%e A340848 .                                _ _ _      |_ _ _|             | |_|_
%e A340848 .                      _ _      |_ _  |_          |_ _          |_ _  |
%e A340848 .              _ _    |_ _|_        |_  |           | |             | |
%e A340848 .        _    |_  |       | |         | |           | |             | |
%e A340848 .       |_|     |_|       |_|         |_|           |_|             |_|
%e A340848 .
%e A340848 n:       1      2        3          4           5               6
%e A340848 a(n):    4      6        8         10          10              14
%e A340848 .
%e A340848 For n = 6 the diagram has 14 edges so a(6) = 14.
%e A340848 On the other hand the diagram has 13 vertices and two subparts or regions, so applying Euler's formula we have that a(6) = 13 + 2 - 1 = 14.
%e A340848 .                                                  _ _ _ _ _
%e A340848 .                            _ _ _ _ _            |_ _ _ _ _|
%e A340848 .        _ _ _ _            |_ _ _ _  |                     |_ _
%e A340848 .       |_ _ _ _|                   | |_                    |_  |
%e A340848 .               |_                  |_  |_ _                  |_|_ _
%e A340848 .                 |_ _                |_ _  |                     | |
%e A340848 .                   | |                   | |                     | |
%e A340848 .                   | |                   | |                     | |
%e A340848 .                   | |                   | |                     | |
%e A340848 .                   |_|                   |_|                     |_|
%e A340848 .
%e A340848 n:              7                    8                      9
%e A340848 a(n):          12                   14                     16
%e A340848 .
%e A340848 For n = 9 the diagram has 16 edges so a(9) = 16.
%e A340848 On the other hand the diagram has 14 vertices and three subparts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16.
%e A340848 Another way for the illustration of initial terms is as follows:
%e A340848 --------------------------------------------------------------------------
%e A340848 .  n  a(n)                             Diagram
%e A340848 --------------------------------------------------------------------------
%e A340848             _
%e A340848    1   4   |_|  _
%e A340848               _| |  _
%e A340848    2   6     |_ _| | |  _
%e A340848                 _ _|_| | |  _
%e A340848    3   8       |_ _|  _| | | |  _
%e A340848                   _ _|  _| | | | |  _
%e A340848    4  10         |_ _ _|  _|_| | | | |  _
%e A340848                     _ _ _|  _ _| | | | | |  _
%e A340848    5  10           |_ _ _| |  _ _| | | | | | |  _
%e A340848                       _ _ _| |_|  _|_| | | | | | |  _
%e A340848    6  14             |_ _ _ _|  _|  _ _| | | | | | | |  _
%e A340848                         _ _ _ _|  _|  _ _| | | | | | | | |  _
%e A340848    7  12               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
%e A340848                           _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
%e A340848    8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
%e A340848                             _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
%e A340848    9  16                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
%e A340848                               _ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | |
%e A340848   10  16                     |_ _ _ _ _ _| |  _|  _| |  _ _|_| | | | | | |
%e A340848                                 _ _ _ _ _ _| |  _|  _| |  _ _ _| | | | | |
%e A340848   11  14                       |_ _ _ _ _ _| | |_ _|  _| |  _ _ _| | | | |
%e A340848                                   _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
%e A340848   12  24                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
%e A340848                                     _ _ _ _ _ _ _| |  _| |  _ _| |  _ _ _|
%e A340848   13  14                           |_ _ _ _ _ _ _| | |  _| |_|  _| |
%e A340848                                       _ _ _ _ _ _ _| | |_ _|  _|  _|
%e A340848   14  18                             |_ _ _ _ _ _ _ _| |  _ _|  _|
%e A340848                                         _ _ _ _ _ _ _ _| |  _ _|
%e A340848   15  24                               |_ _ _ _ _ _ _ _| | |
%e A340848                                           _ _ _ _ _ _ _ _| |
%e A340848   16  22                                 |_ _ _ _ _ _ _ _ _|
%e A340848 ...
%Y A340848 Cf. A001227 (number of subparts or regions).
%Y A340848 Cf. A340847 (number of vertices).
%Y A340848 Cf. A340846 (number of edges in the diagram only with parts).
%Y A340848 Cf. A317292 (total number of edges in the unified diagram).
%Y A340848 Cf. A000203, A060831, A196020, A236104, A235791, A237048, A237270, A237591, A237593, A239660, A245092, A262626, A279387, A280850, A280851, A296508, A335616, A340833.
%K A340848 nonn,more
%O A340848 1,1
%A A340848 _Omar E. Pol_, Jan 24 2021