A340850 Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s) * zeta(s-2) / (zeta(s-1))^2.
1, 1, 4, 5, 16, 4, 36, 21, 40, 16, 100, 20, 144, 36, 64, 85, 256, 40, 324, 80, 144, 100, 484, 84, 416, 144, 364, 180, 784, 64, 900, 341, 400, 256, 576, 200, 1296, 324, 576, 336, 1600, 144, 1764, 500, 640, 484, 2116, 340, 1800, 416, 1024, 720, 2704, 364, 1600, 756, 1296, 784
Offset: 1
Programs
-
Mathematica
f[p_, e_] := (p^(2*e) - 1)*(p - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2021 *)
Formula
Multiplicative with a(1) = 1 and a(p^e) = (p^(2*e)-1) * (p-1) / (p+1) for prime p and e > 0.
Dirichlet inverse b(n) for n > 0 is multiplicative with b(1) = 1 and b(p^e) = -(p-1)^2 * e * p^(e-1) for prime p and e > 0.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 12*zeta(3)/Pi^4 = 0.148083... . - Amiram Eldar, Oct 16 2022