A340851 Number of factorizations of n such that every factor is a divisor of the number of factors.
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 8192, 46656, 73728: 2*2*2*2*2*4*8*8 6*6*6*6*6*6 2*2*2*2*2*2*2*2*2*4*6*6 2*2*2*2*4*4*4*8 2*2*2*2*2*2*3*3*3*3*3*3 2*2*2*2*2*2*2*2*3*4*4*6 2*2*2*4*4*4*4*4 2*2*2*2*2*2*2*3*3*4*4*4 2*2*2*2*2*2*2*2*2*2*2*4 2*2*2*2*2*2*2*2*2*2*6*12 2*2*2*2*2*2*2*2*2*3*4*12
Crossrefs
Positions of nonzero terms are A340852.
The reciprocal version is A340853.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
- Factorizations -
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],And@@IntegerQ/@(Length[#]/#)&]],{n,100}]
Comments