This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340853 #9 Feb 04 2021 20:53:38 %S A340853 0,1,1,2,1,1,1,2,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,3,1,1,2,2,1,1,1,3,1,1, %T A340853 1,3,1,1,1,3,1,1,1,2,1,1,1,4,1,1,1,2,1,2,1,3,1,1,1,3,1,1,1,4,1,1,1,2, %U A340853 1,1,1,4,1,1,1,2,1,1,1,4,2,1,1,3,1,1,1 %N A340853 Number of factorizations of n such that every factor is a multiple of the number of factors. %C A340853 Also factorizations whose greatest common divisor is a multiple of the number of factors. %e A340853 The a(n) factorizations for n = 2, 4, 16, 48, 96, 144, 216, 240, 432: %e A340853 2 4 16 48 96 144 216 240 432 %e A340853 2*2 2*8 6*8 2*48 2*72 4*54 4*60 6*72 %e A340853 4*4 2*24 4*24 4*36 6*36 6*40 8*54 %e A340853 4*12 6*16 6*24 12*18 8*30 12*36 %e A340853 8*12 8*18 2*108 10*24 18*24 %e A340853 12*12 6*6*6 12*20 2*216 %e A340853 3*3*24 2*120 4*108 %e A340853 3*6*12 3*3*48 %e A340853 3*6*24 %e A340853 6*6*12 %e A340853 3*12*12 %t A340853 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A340853 Table[Length[Select[facs[n],n>1&&Divisible[GCD@@#,Length[#]]&]],{n,100}] %Y A340853 Positions of 1's are A048103. %Y A340853 Positions of terms > 1 are A100716. %Y A340853 The version for partitions is A143773 (A316428). %Y A340853 The reciprocal for partitions is A340693 (A340606). %Y A340853 The version for strict partitions is A340830. %Y A340853 The reciprocal version is A340851. %Y A340853 A320911 can be factored into squarefree semiprimes. %Y A340853 A340597 have an alt-balanced factorization. %Y A340853 A340656 lack a twice-balanced factorization, complement A340657. %Y A340853 - Factorizations - %Y A340853 A001055 counts factorizations, with strict case A045778. %Y A340853 A316439 counts factorizations by product and length. %Y A340853 A339846 counts factorizations of even length. %Y A340853 A339890 counts factorizations of odd length. %Y A340853 A340101 counts factorizations into odd factors, odd-length case A340102. %Y A340853 A340653 counts balanced factorizations. %Y A340853 A340785 counts factorizations into even factors, even-length case A340786. %Y A340853 A340831/A340832 counts factorizations with odd maximum/minimum. %Y A340853 A340854 cannot be factored with odd least factor, complement A340855. %Y A340853 Cf. A067538, A168659, A301987, A316413, A327517, A340596, A340599, A340654, A340655, A340827. %K A340853 nonn %O A340853 1,4 %A A340853 _Gus Wiseman_, Feb 04 2021