This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340855 #11 Apr 08 2021 03:21:12 %S A340855 3,5,7,9,11,12,13,15,17,18,19,21,23,24,25,27,29,30,31,33,35,36,37,39, %T A340855 40,41,42,43,45,47,48,49,50,51,53,54,55,56,57,59,60,61,63,65,66,67,69, %U A340855 70,71,72,73,75,77,78,79,80,81,83,84,85,87,89,90,91,93,95 %N A340855 Numbers that can be factored into factors > 1, the least of which is odd. %C A340855 These are numbers that are odd or have an odd divisor 1 < d <= n/d. %e A340855 The sequence of terms together with their prime indices begins: %e A340855 3: {2} 27: {2,2,2} 48: {1,1,1,1,2} %e A340855 5: {3} 29: {10} 49: {4,4} %e A340855 7: {4} 30: {1,2,3} 50: {1,3,3} %e A340855 9: {2,2} 31: {11} 51: {2,7} %e A340855 11: {5} 33: {2,5} 53: {16} %e A340855 12: {1,1,2} 35: {3,4} 54: {1,2,2,2} %e A340855 13: {6} 36: {1,1,2,2} 55: {3,5} %e A340855 15: {2,3} 37: {12} 56: {1,1,1,4} %e A340855 17: {7} 39: {2,6} 57: {2,8} %e A340855 18: {1,2,2} 40: {1,1,1,3} 59: {17} %e A340855 19: {8} 41: {13} 60: {1,1,2,3} %e A340855 21: {2,4} 42: {1,2,4} 61: {18} %e A340855 23: {9} 43: {14} 63: {2,2,4} %e A340855 24: {1,1,1,2} 45: {2,2,3} 65: {3,6} %e A340855 25: {3,3} 47: {15} 66: {1,2,5} %e A340855 For example, 72 is in the sequence because it has three suitable factorizations: (3*3*8), (3*4*6), (3*24). %t A340855 Select[Range[100],Function[n,n>1&&(OddQ[n]||Select[Rest[Divisors[n]],OddQ[#]&&#<=n/#&]!={})]] %Y A340855 The version looking at greatest factor is A057716. %Y A340855 The version for twice-balanced is A340657, with complement A340656. %Y A340855 These factorization are counted by A340832. %Y A340855 The complement is A340854. %Y A340855 A033676 selects the maximum inferior divisor. %Y A340855 A038548 counts inferior divisors, listed by A161906. %Y A340855 A055396 selects the least prime index. %Y A340855 - Factorizations - %Y A340855 A001055 counts factorizations. %Y A340855 A045778 counts strict factorizations. %Y A340855 A316439 counts factorizations by product and length. %Y A340855 A339890 counts factorizations of odd length. %Y A340855 A340653 counts balanced factorizations. %Y A340855 - Odd - %Y A340855 A000009 counts partitions into odd parts. %Y A340855 A024429 counts set partitions of odd length. %Y A340855 A026424 lists numbers with odd Omega. %Y A340855 A066208 lists Heinz numbers of partitions into odd parts. %Y A340855 A067659 counts strict partitions of odd length (A030059). %Y A340855 A174726 counts ordered factorizations of odd length. %Y A340855 A332304 counts strict compositions of odd length. %Y A340855 A340692 counts partitions of odd rank. %Y A340855 Cf. A026804, A027193, A050320, A244991, A340101, A340102, A340596, A340597, A340607, A340654, A340655, A340852. %K A340855 nonn %O A340855 1,1 %A A340855 _Gus Wiseman_, Feb 04 2021