This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340856 #10 Feb 07 2021 19:43:27 %S A340856 2,3,5,6,7,11,13,14,17,19,21,23,26,29,30,31,35,37,38,39,41,43,47,53, %T A340856 57,58,59,61,65,67,71,73,74,78,79,83,86,87,89,91,95,97,101,103,106, %U A340856 107,109,111,113,122,127,129,130,131,133,137,138,139,142,143,145 %N A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222). %C A340856 Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828. %e A340856 The sequence of terms together with their prime indices begins: %e A340856 2: {1} 31: {11} 71: {20} %e A340856 3: {2} 35: {3,4} 73: {21} %e A340856 5: {3} 37: {12} 74: {1,12} %e A340856 6: {1,2} 38: {1,8} 78: {1,2,6} %e A340856 7: {4} 39: {2,6} 79: {22} %e A340856 11: {5} 41: {13} 83: {23} %e A340856 13: {6} 43: {14} 86: {1,14} %e A340856 14: {1,4} 47: {15} 87: {2,10} %e A340856 17: {7} 53: {16} 89: {24} %e A340856 19: {8} 57: {2,8} 91: {4,6} %e A340856 21: {2,4} 58: {1,10} 95: {3,8} %e A340856 23: {9} 59: {17} 97: {25} %e A340856 26: {1,6} 61: {18} 101: {26} %e A340856 29: {10} 65: {3,6} 103: {27} %e A340856 30: {1,2,3} 67: {19} 106: {1,16} %t A340856 Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&] %Y A340856 Note: Heinz number sequences are given in parentheses below. %Y A340856 The case of equality, and the reciprocal version, are both A002110. %Y A340856 The non-strict reciprocal version is A168659 (A340609). %Y A340856 The non-strict version is A168659 (A340610). %Y A340856 These are the Heinz numbers of partitions counted by A340828. %Y A340856 A001222 counts prime factors. %Y A340856 A006141 counts partitions whose length equals their minimum (A324522). %Y A340856 A056239 adds up the prime indices. %Y A340856 A061395 selects the maximum prime index. %Y A340856 A067538 counts partitions whose length divides their sum (A316413/A326836). %Y A340856 A112798 lists the prime indices of each positive integer. %Y A340856 A200750 counts partitions with length coprime to maximum (A340608). %Y A340856 A257541 gives the rank of the partition with Heinz number n. %Y A340856 A340830 counts strict partitions whose parts are multiples of the length. %Y A340856 Cf. A039900, A047993 (A106529), A064174, A143773 (A316428), A326837, A326849 (A326848), A340599, A340691. %K A340856 nonn %O A340856 1,1 %A A340856 _Gus Wiseman_, Feb 05 2021