cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).

This page as a plain text file.
%I A340856 #10 Feb 07 2021 19:43:27
%S A340856 2,3,5,6,7,11,13,14,17,19,21,23,26,29,30,31,35,37,38,39,41,43,47,53,
%T A340856 57,58,59,61,65,67,71,73,74,78,79,83,86,87,89,91,95,97,101,103,106,
%U A340856 107,109,111,113,122,127,129,130,131,133,137,138,139,142,143,145
%N A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).
%C A340856 Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828.
%e A340856 The sequence of terms together with their prime indices begins:
%e A340856       2: {1}         31: {11}       71: {20}
%e A340856       3: {2}         35: {3,4}      73: {21}
%e A340856       5: {3}         37: {12}       74: {1,12}
%e A340856       6: {1,2}       38: {1,8}      78: {1,2,6}
%e A340856       7: {4}         39: {2,6}      79: {22}
%e A340856      11: {5}         41: {13}       83: {23}
%e A340856      13: {6}         43: {14}       86: {1,14}
%e A340856      14: {1,4}       47: {15}       87: {2,10}
%e A340856      17: {7}         53: {16}       89: {24}
%e A340856      19: {8}         57: {2,8}      91: {4,6}
%e A340856      21: {2,4}       58: {1,10}     95: {3,8}
%e A340856      23: {9}         59: {17}       97: {25}
%e A340856      26: {1,6}       61: {18}      101: {26}
%e A340856      29: {10}        65: {3,6}     103: {27}
%e A340856      30: {1,2,3}     67: {19}      106: {1,16}
%t A340856 Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
%Y A340856 Note: Heinz number sequences are given in parentheses below.
%Y A340856 The case of equality, and the reciprocal version, are both A002110.
%Y A340856 The non-strict reciprocal version is A168659 (A340609).
%Y A340856 The non-strict version is A168659 (A340610).
%Y A340856 These are the Heinz numbers of partitions counted by A340828.
%Y A340856 A001222 counts prime factors.
%Y A340856 A006141 counts partitions whose length equals their minimum (A324522).
%Y A340856 A056239 adds up the prime indices.
%Y A340856 A061395 selects the maximum prime index.
%Y A340856 A067538 counts partitions whose length divides their sum (A316413/A326836).
%Y A340856 A112798 lists the prime indices of each positive integer.
%Y A340856 A200750 counts partitions with length coprime to maximum (A340608).
%Y A340856 A257541 gives the rank of the partition with Heinz number n.
%Y A340856 A340830 counts strict partitions whose parts are multiples of the length.
%Y A340856 Cf. A039900, A047993 (A106529), A064174, A143773 (A316428), A326837, A326849 (A326848), A340599, A340691.
%K A340856 nonn
%O A340856 1,1
%A A340856 _Gus Wiseman_, Feb 05 2021