This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340858 #12 Feb 22 2021 02:25:44 %S A340858 0,0,0,1,1,1,2,5,6,3,4,9,9,7,10,22,10,10,9,22,18,14,14,46,26,21,35,38, %T A340858 18,31,20,66,45,22,43,57,25,25,48,82,27,46,35,70,69,43,34,136,63,57, %U A340858 72,90,46,76,80,143,91,42,46,149,54,47,115,204,105 %N A340858 a(n) is the number of integer trapezoids (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d) and integer diagonals e,f. %C A340858 By "trapezoid" here is meant a quadrilateral with exactly one pair of parallel sides. %C A340858 Without loss of generality we assume for the parallel sides c < a and for the diagonals f <= e. e and f are uniquely determined by e = sqrt((c(a^2-b^2) + a(d^2-c^2))/(a-c)) and f = sqrt((c(a^2-d^2) + a(b^2-c^2))/(a-c)). %C A340858 The smallest possible trapezoid has side lengths a=4, c=3, b=d=2 and diagonals e=f=4. The smallest possible trapezoid which is not isosceles has side lengths a=8, b=9, c=3, d=11 and diagonals e=13 and f=9. %e A340858 a(7)=2 because there are two possible trapezoids: a=5, c=3, b=d=7, e=f=8 and a=7, c=4, b=d=6, e=f=8. %t A340858 n=65;list={}; %t A340858 For[a=1,a<=n,a++, %t A340858 For[c=1,c<a,c++, %t A340858 For[d=Floor[(a-c)/2]+1,d<=n,d++, %t A340858 For[b=1,b<=n,b++, %t A340858 se=c(a^2-b^2)+a(d^2-c^2);sf=c(a^2-d^2)+a(b^2-c^2); %t A340858 If[se<=0||sf>se,Break[]];If[sf<=0,Continue[]]; %t A340858 e=Sqrt[se/(a-c)];f=Sqrt[sf/(a-c)]; %t A340858 If[IntegerQ[e]&&IntegerQ[f]&&a+d>f&&d+f>a&&f+a>d&&e+b>a&&b+a>e&&a+e>b,AppendTo[list,{a,b,c,d,e,f}]]]]]] %t A340858 Table[Select[list,Max[#[[1]],#[[2]],#[[3]],#[[4]]]==n&]//Length,{n,1,65}] %Y A340858 Cf. A224931 for parallelograms, A340859 and A340860 for isosceles and non-isosceles trapezoids. %K A340858 nonn %O A340858 1,7 %A A340858 _Herbert Kociemba_, Jan 24 2021