cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340859 a(n) is the number of isosceles integer trapezoids (up to congruence) with integer side lengths a,c,b=d with n=Max(a,b,c) and integer diagonals e=f.

This page as a plain text file.
%I A340859 #9 Feb 22 2021 02:25:40
%S A340859 0,0,0,1,1,1,2,5,6,3,3,9,6,5,10,20,9,10,8,21,18,10,10,37,21,12,24,31,
%T A340859 14,26,17,55,32,20,36,54,22,20,39,74,24,40,26,58,59,24,26,113,47,41,
%U A340859 54,69,33,51,61,111,65,35,39,124,38,39,88,145,79
%N A340859 a(n) is the number of isosceles integer trapezoids (up to congruence) with integer side lengths a,c,b=d with n=Max(a,b,c) and integer diagonals e=f.
%C A340859 By "trapezoid" here is meant a quadrilateral with exactly one pair of parallel sides.
%C A340859 Without loss of generality we assume b=d and for the parallel sides c < a. e and f are uniquely determined by e = f = sqrt((c(a^2-b^2) + a(b^2-c^2))/(a-c)). The smallest possible isosceles trapezoid has side lengths a=4, c=3, b=d=2 and diagonals e=f=4.
%e A340859 a(7)=2 because there are two possible trapezoids: a=5, c=3, b=d=7, e=f=8 and a=7, c=4, b=d=6, e=f=8.
%t A340859 n=65;list={};
%t A340859 For[a=1,a<=n,a++,
%t A340859 For[c=1,c<a,c++,
%t A340859 For[d=Floor[(a-c)/2]+1,d<=n,d++,
%t A340859 For[b=1,b<=n,b++,
%t A340859 se=c(a^2-b^2)+a(d^2-c^2);sf=c(a^2-d^2)+a(b^2-c^2);
%t A340859 If[se<=0||sf>se,Break[]];If[sf<=0,Continue[]];
%t A340859 e=Sqrt[se/(a-c)];f=Sqrt[sf/(a-c)];
%t A340859 If[IntegerQ[e]&&IntegerQ[f]&&a+d>f&&d+f>a&&f+a>d&&e+b>a&&b+a>e&&a+e>b,AppendTo[list,{a,b,c,d,e,f}]]]]]]
%t A340859 Table[Select[list,Max[#[[1]],#[[2]],#[[3]],#[[4]]]==n&&#[[2]]==#[[4]]&]//Length,{n,1,65}]
%Y A340859 Cf. A224931 for parallelograms, A340858 for general trapezoids and A340860 for non-isosceles trapezoids.
%K A340859 nonn
%O A340859 1,7
%A A340859 _Herbert Kociemba_, Jan 24 2021