A340860 a(n) is the number of non-isosceles integer trapezoids (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d) and integer diagonals e,f.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 2, 1, 0, 1, 1, 0, 4, 4, 9, 5, 9, 11, 7, 4, 5, 3, 11, 13, 2, 7, 3, 3, 5, 9, 8, 3, 6, 9, 12, 10, 19, 8, 23, 16, 16, 18, 21, 13, 25, 19, 32, 26, 7, 7, 25, 16, 8, 27, 59, 26
Offset: 1
Keywords
Examples
a(34)=2 because up to congruence there are exactly two trapezoids which are not isosceles: a=32, b=26, c=22, d=34 and e=54, f=18; a=34, b=11, c=32, d=12 and e=40, f=29.
Crossrefs
Programs
-
Mathematica
n=65;list={}; For[a=1,a<=n,a++, For[c=1,cse,Break[]];If[sf<=0,Continue[]]; e=Sqrt[se/(a-c)];f=Sqrt[sf/(a-c)]; If[IntegerQ[e]&&IntegerQ[f]&&a+d>f&&d+f>a&&f+a>d&&e+b>a&&b+a>e&&a+e>b,AppendTo[list,{a,b,c,d,e,f}]]]]]] Table[Select[list,Max[#[[1]],#[[2]],#[[3]],#[[4]]]==n&[[2]]!=#[[4]]&]//Length,{n,1,65}]
Comments