This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340869 #22 Feb 10 2023 08:08:29 %S A340869 4,12,14,131,222,229,330,351,356,525,561,825,969,979,1009,1115,1123, %T A340869 1243,1722,1826,2221,2632,2673,2814,3167,3436,3437,3966,4056,4307, %U A340869 4583,5010,5137,5509,5772,6031,6034,6230,6233,6363,6505,6532,6794,7112,7551,8154,8330,8476,9260,9348,9349,9613 %N A340869 Numbers k such that the determinant of the 3 X 3 matrix [prime(k),prime(k+1),prime(k+2); prime(k+3),prime(k+4),prime(k+5); prime(k+6),prime(k+7),prime(k+8)] is a square. %C A340869 Numbers k such that A117330(k) is a square. %H A340869 Robert Israel, <a href="/A340869/b340869.txt">Table of n, a(n) for n = 1..3000</a> %e A340869 a(3) = 14 is a term because A117330(14) = Determinant([43,47,53; 59,61,67; 71,73,79]) = 144 = 12^2. %p A340869 f:= proc(n) local i; LinearAlgebra:-Determinant(Matrix(3,3,[seq(ithprime(i),i=n..n+8)])) end proc: %p A340869 select(t -> issqr(f(t)), [$1..10000]); %t A340869 okQ[k_] := IntegerQ@ Sqrt@ Det@ Partition[Prime[k+#]& /@ Range[0, 8], 3]; %t A340869 Select[Range[10000], okQ] (* _Jean-François Alcover_, Feb 10 2023 *) %o A340869 (PARI) isok(k) = issquare(matdet(matrix(3,3,i,j,prime((k+j-1)+3*(i-1))))); \\ _Michel Marcus_, Jan 25 2021 %o A340869 (Python) %o A340869 from sympy import nextprime, Matrix, integer_nthroot %o A340869 k,A340869_list, plist = 1,[], [2, 3, 5, 7, 11, 13, 17, 19, 23] %o A340869 while k < 10**7: %o A340869 d = Matrix(plist).reshape(3,3).det() %o A340869 if d >= 0 and integer_nthroot(d,2)[1]: %o A340869 A340869_list.append(k) %o A340869 k,plist = k+1,plist[1:]+[nextprime(plist[-1])] # _Chai Wah Wu_, Jan 25 2021 %Y A340869 Cf. A117330, A340874. Includes A117345. %K A340869 nonn %O A340869 1,1 %A A340869 _J. M. Bergot_ and _Robert Israel_, Jan 24 2021