cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340879 Decimal expansion of K4 = 7/Pi^3 * Product_{primes p == 1 (mod 4)} (1 - 4/(p+1)^2).

Original entry on oeis.org

1, 9, 0, 8, 7, 6, 7, 2, 1, 1, 6, 8, 5, 2, 8, 4, 4, 8, 0, 1, 1, 2, 2, 3, 7, 2, 4, 1, 3, 1, 1, 7, 1, 0, 8, 8, 3, 1, 4, 0, 9, 3, 4, 7, 9, 8, 3, 7, 0, 9, 6, 0, 4, 3, 3, 2, 8, 6, 7, 0, 2, 0, 4, 5, 8, 8, 6, 6, 2, 4, 6, 8, 5, 8, 5, 6, 5, 7, 7, 9, 1, 4, 2, 2, 8, 2, 8, 9, 4, 9, 5, 1, 2, 4, 4, 3, 2, 3, 8, 2, 9, 4, 4, 7, 2, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2021

Keywords

Comments

The constant K4 from the paper by Finch and Sebah, p. 8. For more info see A340857.
Equal to the constant 2*C4 = (d(4) - 1)*C4 from the paper by Finch, Martin and Sebah, p. 2730, formula (5).

Examples

			0.190876721168528448011223724131171088314093479837096043328670204588662...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := 1/(1 - 1/p^2)*(1 - (5 p - 3)/(p^2*(p + 1)));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[4, 1, m]; sump = sump + difp; m++];
    RealDigits[Chop[N[7/Pi^3 * Exp[sump], digits]], 10, digits-1][[1]]

Formula

Equals 7/Pi^3 * Product_{primes p == 1 (mod 4)} 1/(1 - 1/p^2)*(1 - (5*p - 3)/(p^2*(p+1))).