cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340886 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 2^(n-k-1) * a(k).

This page as a plain text file.
%I A340886 #5 Jan 25 2021 19:04:48
%S A340886 1,1,6,76,1720,60816,3096384,214579296,19422473088,2224980891904,
%T A340886 314675568756736,53849929134122496,10966912240761425920,
%U A340886 2621246193301011159040,726608751113679704248320,231217063994112487051984896,83713709650818121936828858368
%N A340886 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 2^(n-k-1) * a(k).
%F A340886 Sum_{n>=0} a(n) * x^n / (n!)^2 = 2 / (3 - BesselI(0,2*sqrt(2*x))).
%t A340886 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 2^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
%t A340886 nmax = 16; CoefficientList[Series[2/(3 - BesselI[0, 2 Sqrt[2 x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
%Y A340886 Cf. A102221, A122704, A340887, A340888.
%K A340886 nonn
%O A340886 0,3
%A A340886 _Ilya Gutkovskiy_, Jan 25 2021