cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340914 Square array, read by rows. For n,d >= 0, a(n,d) is the number of congruences of the d-twisted partition monoid of degree n.

This page as a plain text file.
%I A340914 #38 Jan 06 2024 14:32:14
%S A340914 2,3,3,9,7,4,12,43,14,5,16,76,136,24,6,19,134,329,334,37,7,22,188,773,
%T A340914 1105,696,53,8,25,251,1281,3456,3100,1294,72,9,28,323,1969,6754,12806,
%U A340914 7608,2213,94,10,31,404,2864,11930,29413,41054,16842,3551,119,11,34,494,3993,19578,59547,110312,117273,34353,5419,147,12
%N A340914 Square array, read by rows. For n,d >= 0, a(n,d) is the number of congruences of the d-twisted partition monoid of degree n.
%C A340914 The d-twisted partition monoids P_{n,d} are defined in the East-Ruškuc paper cited below.
%H A340914 Andrew Howroyd, <a href="/A340914/b340914.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)
%H A340914 James East and Nik Ruškuc, <a href="https://arxiv.org/abs/2010.09288">Properties of congruences of twisted partition monoids and their lattices</a>, arXiv:2010.09288 [math.RA], 2020-2021.
%F A340914 a(0,d) = d+2,
%F A340914 a(1,d) = (3*d^2+5*d+6)/2,
%F A340914 a(2,d) = (13*d^4+106*d^3+299*d^2+398*d+216)/24,
%F A340914 a(3,d) = (13*d^7+322*d^6+3262*d^5+17920*d^4+58597*d^3+115318*d^2+127128*d+60480)/5040,
%F A340914 a(n,d) = binomial(3*n+d-4,3*n-5) + 8*binomial(3*n+d-1,3*n-1) + 2*binomial(3*n+d-2,3*n-1) + 5*binomial(3*n+d-3,3*n-1) - 2*binomial(3*n+d-4,3*n-1) for n >= 4.
%F A340914 For fixed d >= 0, a(n,d) is asymptotic to (3*n)^(d+1) / (d+1)!.
%F A340914 For fixed n >= 4, a(n,d) is asymptotic to 13*d^(3*n-1) / (3*n-1)!.
%F A340914 A rational generating function is given in the East-Ruškuc paper, and also polynomial expressions for a(n,d) with d fixed (and n >= 4).
%e A340914 Array begins:
%e A340914 =========================================================
%e A340914 n\d |  0   1    2     3      4      5       6       7 ...
%e A340914 ----+----------------------------------------------------
%e A340914   0 |  2   3    4     5      6      7       8       9 ...
%e A340914   1 |  3   7   14    24     37     53      72      94 ...
%e A340914   2 |  9  43  136   334    696   1294    2213    3551 ...
%e A340914   3 | 12  76  329  1105   3100   7608   16842   34353 ...
%e A340914   4 | 16 134  773  3456  12806  41054  117273  304889 ...
%e A340914   5 | 19 188 1281  6754  29413 110312  366724 1103538 ...
%e A340914   6 | 22 251 1969 11930  59547 255132  965409 3293916 ...
%e A340914   7 | 25 323 2864 19578 110012 529298 2242845 8544569 ...
%e A340914   ...
%o A340914 (PARI) T(n,d) = {if(n<=3, if(n<=1, if(n<=0, if(n==0, d+2), (3*d^2+5*d+6)/2), if(n==2, (13*d^4+106*d^3+299*d^2+398*d+216)/24, (13*d^7+322*d^6+3262*d^5+17920*d^4+58597*d^3+115318*d^2+127128*d+60480)/5040)), binomial(3*n+d-4,3*n-5) + 8*binomial(3*n+d-1,3*n-1) +2*binomial(3*n+d-2,3*n-1) + 5*binomial(3*n+d-3,3*n-1) - 2*binomial(3*n+d-4,3*n-1))} \\ _Andrew Howroyd_, Jan 06 2024
%K A340914 nonn,tabl
%O A340914 0,1
%A A340914 _James East_, Mar 07 2021