cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340927 Decimal expansion of Product_{primes p == 3 (mod 5)} 1/(1 - 1/p^4).

This page as a plain text file.
%I A340927 #12 Jan 28 2021 03:41:26
%S A340927 1,0,1,2,5,3,9,5,7,1,6,4,4,9,3,5,9,0,3,5,2,2,1,0,0,2,7,2,6,9,1,1,5,2,
%T A340927 1,4,0,4,7,8,3,6,2,8,0,2,7,8,7,7,4,9,8,5,4,8,0,0,1,3,4,7,7,2,6,9,5,3,
%U A340927 0,3,0,6,5,9,6,3,8,1,0,3,3,1,7,5,3,7,2,3,4,0,9,4,3,2,1,6,9,8,4,4,3,4,1,5,7
%N A340927 Decimal expansion of Product_{primes p == 3 (mod 5)} 1/(1 - 1/p^4).
%H A340927 Vaclav Kotesovec, <a href="/A340927/b340927.txt">Table of n, a(n) for n = 1..500</a>
%H A340927 R. J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{m=5,n=3}(s=4).
%F A340927 Equals A340665^2 / A340711.
%F A340927 Equals 104*Pi^4 / (9375 * A340808 * A340926 * A340809).
%F A340927 Equals Sum_{k>=1} 1/A004617(k)^4. - _Amiram Eldar_, Jan 28 2021
%e A340927 1.012539571644935903522100272691152140478362802787749854800134772695303...
%Y A340927 Cf. A340808, A340809, A340926.
%Y A340927 Cf. A340004, A340794, A340665, A340127.
%Y A340927 Cf. A340629, A340710, A340711, A340628.
%K A340927 nonn,cons
%O A340927 1,4
%A A340927 _Vaclav Kotesovec_, Jan 27 2021