This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340930 #12 Apr 09 2021 09:41:29 %S A340930 8,24,32,36,54,80,81,96,120,128,144,180,200,216,224,270,300,320,324, %T A340930 336,384,405,450,480,486,500,504,512,560,576,675,704,720,729,750,756, %U A340930 784,800,840,864,896,1056,1080,1125,1134,1176,1200,1250,1260,1280,1296,1344 %N A340930 Heinz numbers of integer partitions of even negative rank. %C A340930 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %C A340930 The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined. %H A340930 Freeman J. Dyson, <a href="https://doi.org/10.1016/S0021-9800(69)80006-2">A new symmetry of partitions</a>, Journal of Combinatorial Theory 7.1 (1969): 56-61. %H A340930 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %e A340930 The sequence of partitions together with their Heinz numbers begins: %e A340930 8: (1,1,1) 270: (3,2,2,2,1) %e A340930 24: (2,1,1,1) 300: (3,3,2,1,1) %e A340930 32: (1,1,1,1,1) 320: (3,1,1,1,1,1,1) %e A340930 36: (2,2,1,1) 324: (2,2,2,2,1,1) %e A340930 54: (2,2,2,1) 336: (4,2,1,1,1,1) %e A340930 80: (3,1,1,1,1) 384: (2,1,1,1,1,1,1,1) %e A340930 81: (2,2,2,2) 405: (3,2,2,2,2) %e A340930 96: (2,1,1,1,1,1) 450: (3,3,2,2,1) %e A340930 120: (3,2,1,1,1) 480: (3,2,1,1,1,1,1) %e A340930 128: (1,1,1,1,1,1,1) 486: (2,2,2,2,2,1) %e A340930 144: (2,2,1,1,1,1) 500: (3,3,3,1,1) %e A340930 180: (3,2,2,1,1) 504: (4,2,2,1,1,1) %e A340930 200: (3,3,1,1,1) 512: (1,1,1,1,1,1,1,1,1) %e A340930 216: (2,2,2,1,1,1) 560: (4,3,1,1,1,1) %e A340930 224: (4,1,1,1,1,1) 576: (2,2,1,1,1,1,1,1) %t A340930 rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n]; %t A340930 Select[Range[2,100],EvenQ[rk[#]]&&rk[#]<0&] %Y A340930 Note: A-numbers of Heinz-number sequences are in parentheses below. %Y A340930 These partitions are counted by A101708. %Y A340930 The positive version is (A340605). %Y A340930 The odd version is A101707 (A340929). %Y A340930 The not necessarily even version is A064173 (A340788). %Y A340930 A001222 counts prime factors. %Y A340930 A027187 counts partitions of even length. %Y A340930 A047993 counts balanced partitions (A106529). %Y A340930 A056239 adds up prime indices. %Y A340930 A058696 counts partitions of even numbers. %Y A340930 A061395 selects the maximum prime index. %Y A340930 A063995/A105806 count partitions by Dyson rank. %Y A340930 A072233 counts partitions by sum and length. %Y A340930 A112798 lists the prime indices of each positive integer. %Y A340930 A168659 counts partitions whose length is divisible by maximum. %Y A340930 A200750 counts partitions whose length and maximum are relatively prime. %Y A340930 - Rank - %Y A340930 A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521). %Y A340930 A101198 counts partitions of rank 1 (A325233). %Y A340930 A257541 gives the rank of the partition with Heinz number n. %Y A340930 A324520 counts partitions with rank equal to least part (A324519). %Y A340930 A340601 counts partitions of even rank (A340602). %Y A340930 A340692 counts partitions of odd rank (A340603). %Y A340930 Cf. A003114, A006141, A039900, A117193, A117409, A316413, A324517, A325134, A326845, A340604, A340787, A340828, A340830. %K A340930 nonn %O A340930 1,1 %A A340930 _Gus Wiseman_, Jan 30 2021