cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.

This page as a plain text file.
%I A340931 #5 Feb 07 2021 19:43:35
%S A340931 2,5,8,11,17,18,20,23,31,32,41,42,44,45,47,50,59,67,68,72,73,78,80,83,
%T A340931 92,97,98,99,103,105,109,110,114,124,125,127,128,137,149,153,157,162,
%U A340931 164,167,168,170,174,176,179,180,182,188,191,195,197,200,207,211
%N A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.
%C A340931 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.
%F A340931 Intersection of A026424 and A300063.
%e A340931 The sequence of terms together with the corresponding partitions begins:
%e A340931       2: (1)             50: (3,3,1)        109: (29)
%e A340931       5: (3)             59: (17)           110: (5,3,1)
%e A340931       8: (1,1,1)         67: (19)           114: (8,2,1)
%e A340931      11: (5)             68: (7,1,1)        124: (11,1,1)
%e A340931      17: (7)             72: (2,2,1,1,1)    125: (3,3,3)
%e A340931      18: (2,2,1)         73: (21)           127: (31)
%e A340931      20: (3,1,1)         78: (6,2,1)        128: (1,1,1,1,1,1,1)
%e A340931      23: (9)             80: (3,1,1,1,1)    137: (33)
%e A340931      31: (11)            83: (23)           149: (35)
%e A340931      32: (1,1,1,1,1)     92: (9,1,1)        153: (7,2,2)
%e A340931      41: (13)            97: (25)           157: (37)
%e A340931      42: (4,2,1)         98: (4,4,1)        162: (2,2,2,2,1)
%e A340931      44: (5,1,1)         99: (5,2,2)        164: (13,1,1)
%e A340931      45: (3,2,2)        103: (27)           167: (39)
%e A340931      47: (15)           105: (4,3,2)        168: (4,2,1,1,1)
%t A340931 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A340931 Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]
%Y A340931 Note: A-numbers of Heinz-number sequences are in parentheses below.
%Y A340931 These partitions are counted by A160786.
%Y A340931 The even version is A236913 (A340784).
%Y A340931 The case of where the prime indices are also odd is A300272.
%Y A340931 A000009 counts partitions into odd parts (A066208).
%Y A340931 A001222 counts prime factors.
%Y A340931 A027193 counts odd-length partitions (A026424).
%Y A340931 A047993 counts balanced partitions (A106529).
%Y A340931 A056239 adds up prime indices.
%Y A340931 A058695 counts partitions of odd numbers (A300063).
%Y A340931 A072233 counts partitions by sum and length.
%Y A340931 A112798 lists the prime indices of each positive integer.
%Y A340931 Cf. A000041, A316413, A326845, A340385, A340386, A340387, A340604, A340607, A340854, A340855.
%K A340931 nonn
%O A340931 1,1
%A A340931 _Gus Wiseman_, Feb 05 2021