cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.

This page as a plain text file.
%I A340932 #14 Feb 14 2021 01:40:19
%S A340932 2,4,5,6,8,10,11,12,14,16,17,18,20,22,23,24,25,26,28,30,31,32,34,35,
%T A340932 36,38,40,41,42,44,46,47,48,50,52,54,55,56,58,59,60,62,64,65,66,67,68,
%U A340932 70,72,73,74,76,78,80,82,83,84,85,86,88,90,92,94,95,96,97
%N A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.
%C A340932 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not included.
%F A340932 A055396(a(n)) belongs to A005408.
%F A340932 Closed under multiplication.
%e A340932 The sequence of terms together with their prime indices begins:
%e A340932       2: {1}           24: {1,1,1,2}       46: {1,9}
%e A340932       4: {1,1}         25: {3,3}           47: {15}
%e A340932       5: {3}           26: {1,6}           48: {1,1,1,1,2}
%e A340932       6: {1,2}         28: {1,1,4}         50: {1,3,3}
%e A340932       8: {1,1,1}       30: {1,2,3}         52: {1,1,6}
%e A340932      10: {1,3}         31: {11}            54: {1,2,2,2}
%e A340932      11: {5}           32: {1,1,1,1,1}     55: {3,5}
%e A340932      12: {1,1,2}       34: {1,7}           56: {1,1,1,4}
%e A340932      14: {1,4}         35: {3,4}           58: {1,10}
%e A340932      16: {1,1,1,1}     36: {1,1,2,2}       59: {17}
%e A340932      17: {7}           38: {1,8}           60: {1,1,2,3}
%e A340932      18: {1,2,2}       40: {1,1,1,3}       62: {1,11}
%e A340932      20: {1,1,3}       41: {13}            64: {1,1,1,1,1,1}
%e A340932      22: {1,5}         42: {1,2,4}         65: {3,6}
%e A340932      23: {9}           44: {1,1,5}         66: {1,2,5}
%t A340932 Select[Range[100],OddQ[PrimePi[FactorInteger[#][[1,1]]]]&]
%Y A340932 These partitions are counted by A026804.
%Y A340932 The case where all prime indices are odd is A066208.
%Y A340932 Looking at greatest prime index instead of least gives A244991.
%Y A340932 Every term x is a product of A257991(x) elements of A341446.
%Y A340932 The complement is {1} \/ A340933, counted by A026805.
%Y A340932 A001222 counts prime factors.
%Y A340932 A005408 lists odd numbers.
%Y A340932 A027193 counts odd-length partitions, ranked by A026424.
%Y A340932 A031368 lists odd-indexed primes.
%Y A340932 A055396 selects least prime index.
%Y A340932 A056239 adds up prime indices.
%Y A340932 A058695 counts partitions of odd numbers, ranked by A300063.
%Y A340932 A061395 selects greatest prime index.
%Y A340932 A112798 lists the prime indices of each positive integer.
%Y A340932 Cf. A006141, A160786, A300272, A340604, A340854, A340855.
%K A340932 nonn
%O A340932 1,1
%A A340932 _Gus Wiseman_, Feb 12 2021