cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340933 Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even.

This page as a plain text file.
%I A340933 #6 Feb 14 2021 01:40:27
%S A340933 3,7,9,13,15,19,21,27,29,33,37,39,43,45,49,51,53,57,61,63,69,71,75,77,
%T A340933 79,81,87,89,91,93,99,101,105,107,111,113,117,119,123,129,131,133,135,
%U A340933 139,141,147,151,153,159,161,163,165,169,171,173,177,181,183
%N A340933 Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even.
%C A340933 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not counted.
%F A340933 A055396(a(n)) belongs to A005843.
%F A340933 Closed under multiplication.
%e A340933 The sequence of terms together with their prime indices begins:
%e A340933       3: {2}         51: {2,7}         99: {2,2,5}
%e A340933       7: {4}         53: {16}         101: {26}
%e A340933       9: {2,2}       57: {2,8}        105: {2,3,4}
%e A340933      13: {6}         61: {18}         107: {28}
%e A340933      15: {2,3}       63: {2,2,4}      111: {2,12}
%e A340933      19: {8}         69: {2,9}        113: {30}
%e A340933      21: {2,4}       71: {20}         117: {2,2,6}
%e A340933      27: {2,2,2}     75: {2,3,3}      119: {4,7}
%e A340933      29: {10}        77: {4,5}        123: {2,13}
%e A340933      33: {2,5}       79: {22}         129: {2,14}
%e A340933      37: {12}        81: {2,2,2,2}    131: {32}
%e A340933      39: {2,6}       87: {2,10}       133: {4,8}
%e A340933      43: {14}        89: {24}         135: {2,2,2,3}
%e A340933      45: {2,2,3}     91: {4,6}        139: {34}
%e A340933      49: {4,4}       93: {2,11}       141: {2,15}
%t A340933 Select[Range[2,100],EvenQ[PrimePi[FactorInteger[#][[1,1]]]]&]
%Y A340933 These partitions are counted by A026805.
%Y A340933 Looking at length or at maximum gives A028260/A244990, counted by A027187.
%Y A340933 If all prime indices are even we get A066207, counted by A035363.
%Y A340933 The complement is {1} \/ A340932, counted by A026804.
%Y A340933 A001222 counts prime factors.
%Y A340933 A005843 lists even numbers.
%Y A340933 A031215 lists even-indexed primes.
%Y A340933 A055396 selects least prime index.
%Y A340933 A056239 adds up prime indices.
%Y A340933 A058695 counts partitions of even numbers, ranked by A300061.
%Y A340933 A061395 selects greatest prime index.
%Y A340933 A112798 lists the prime indices of each positive integer.
%Y A340933 Cf. A006141, A030229, A067661, A101708, A236913,  A339846, A340601, A340602, A340605, A340854/A340855.
%K A340933 nonn
%O A340933 1,1
%A A340933 _Gus Wiseman_, Feb 12 2021