This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340933 #6 Feb 14 2021 01:40:27 %S A340933 3,7,9,13,15,19,21,27,29,33,37,39,43,45,49,51,53,57,61,63,69,71,75,77, %T A340933 79,81,87,89,91,93,99,101,105,107,111,113,117,119,123,129,131,133,135, %U A340933 139,141,147,151,153,159,161,163,165,169,171,173,177,181,183 %N A340933 Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even. %C A340933 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not counted. %F A340933 A055396(a(n)) belongs to A005843. %F A340933 Closed under multiplication. %e A340933 The sequence of terms together with their prime indices begins: %e A340933 3: {2} 51: {2,7} 99: {2,2,5} %e A340933 7: {4} 53: {16} 101: {26} %e A340933 9: {2,2} 57: {2,8} 105: {2,3,4} %e A340933 13: {6} 61: {18} 107: {28} %e A340933 15: {2,3} 63: {2,2,4} 111: {2,12} %e A340933 19: {8} 69: {2,9} 113: {30} %e A340933 21: {2,4} 71: {20} 117: {2,2,6} %e A340933 27: {2,2,2} 75: {2,3,3} 119: {4,7} %e A340933 29: {10} 77: {4,5} 123: {2,13} %e A340933 33: {2,5} 79: {22} 129: {2,14} %e A340933 37: {12} 81: {2,2,2,2} 131: {32} %e A340933 39: {2,6} 87: {2,10} 133: {4,8} %e A340933 43: {14} 89: {24} 135: {2,2,2,3} %e A340933 45: {2,2,3} 91: {4,6} 139: {34} %e A340933 49: {4,4} 93: {2,11} 141: {2,15} %t A340933 Select[Range[2,100],EvenQ[PrimePi[FactorInteger[#][[1,1]]]]&] %Y A340933 These partitions are counted by A026805. %Y A340933 Looking at length or at maximum gives A028260/A244990, counted by A027187. %Y A340933 If all prime indices are even we get A066207, counted by A035363. %Y A340933 The complement is {1} \/ A340932, counted by A026804. %Y A340933 A001222 counts prime factors. %Y A340933 A005843 lists even numbers. %Y A340933 A031215 lists even-indexed primes. %Y A340933 A055396 selects least prime index. %Y A340933 A056239 adds up prime indices. %Y A340933 A058695 counts partitions of even numbers, ranked by A300061. %Y A340933 A061395 selects greatest prime index. %Y A340933 A112798 lists the prime indices of each positive integer. %Y A340933 Cf. A006141, A030229, A067661, A101708, A236913, A339846, A340601, A340602, A340605, A340854/A340855. %K A340933 nonn %O A340933 1,1 %A A340933 _Gus Wiseman_, Feb 12 2021