A340976 Sum_{1 < k < n} sigma(n) mod k, where sigma = A000203.
0, 0, 0, 2, 2, 2, 7, 8, 18, 11, 16, 27, 30, 30, 40, 47, 46, 75, 60, 72, 101, 93, 84, 109, 146, 148, 167, 142, 137, 180, 166, 197, 254, 282, 283, 301, 247, 333, 367, 347, 283, 389, 327, 367, 475, 501, 373, 591, 517, 562, 621, 597, 491, 615, 699, 637, 810, 839, 585, 783, 671, 964, 1024
Offset: 1
Keywords
Programs
-
Mathematica
Table[Sum[Mod[DivisorSigma[1,n],k],{k,2,n-1}],{n,1,138}] (* Metin Sariyar, Feb 02 2021 *)
-
PARI
apply( {A340976(n,s=sigma(n))=sum(k=1,n-1,s%k)}, [1..66]) \\ M. F. Hasler, Feb 01 2021
-
PARI
T(n) = n*(n+1)/2; S(n) = my(s=sqrtint(n)); sum(k=1, s, T(n\k) + k*(n\k)) - s*T(s); \\ A024916 g(a,b) = my(s=0); while(a <= b, my(t=b\a); my(u=b\t); s += t*(T(u) - T(a-1)); a = u+1); s; a(n) = (n-1)*sigma(n) - S(sigma(n)) + g(n, sigma(n)); \\ Daniel Suteu, Feb 02 2021
Formula
a(n) = (n-1)*sigma(n) - A024916(sigma(n)) + Sum_{k=n..sigma(n)} k*floor(sigma(n)/k). - Daniel Suteu, Feb 02 2021
Comments