cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340987 Number of colored integer partitions of 2n such that all colors from an n-set are used.

This page as a plain text file.
%I A340987 #24 Jan 15 2024 12:53:41
%S A340987 1,2,10,59,362,2287,14719,95965,631714,4189334,27946335,187319827,
%T A340987 1260570515,8511460908,57634550179,391232510284,2661483301282,
%U A340987 18140003082945,123846214549072,846801764644618,5797865791444367,39745254613927264,272762265331208465
%N A340987 Number of colored integer partitions of 2n such that all colors from an n-set are used.
%H A340987 Alois P. Heinz, <a href="/A340987/b340987.txt">Table of n, a(n) for n = 0..1183</a>
%F A340987 a(n) = [x^(2n)] (-1 + Product_{j>0} 1/(1-x^j))^n.
%F A340987 a(n) = A060642(2*n,n).
%F A340987 a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A144064(2n,n-i).
%F A340987 a(n) ~ c * d^n / sqrt(n), where d = 7.0224714601856191637116674203375767768930294104680988528373522936595686998... and c = 0.306577097117652483059452115503859901867921865482563952948772592499558... - _Vaclav Kotesovec_, Feb 14 2021
%e A340987 a(1) = 2: 2a, 1a1a.
%e A340987 a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
%p A340987 b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
%p A340987       (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
%p A340987     end:
%p A340987 a:= n-> b(n$2):
%p A340987 seq(a(n), n=0..25);
%t A340987 b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
%t A340987 a[n_] := b[n, n];
%t A340987 a /@ Range[0, 25] (* _Jean-François Alcover_, Feb 04 2021, after _Alois P. Heinz_ *)
%t A340987 Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%t A340987 (* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Jan 15 2024 *)
%Y A340987 Cf. A000041, A060642, A144064, A324595.
%K A340987 nonn
%O A340987 0,2
%A A340987 _Alois P. Heinz_, Feb 01 2021