This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340992 #12 Dec 13 2023 11:34:56 %S A340992 1,2,8,41,216,1172,6491,36430,206472,1179104,6774048,39107400, %T A340992 226683903,1318427762,7690414740,44970645116,263545466456, %U A340992 1547445069318,9101515979306,53613206171619,316243949777696,1867702439169958,11042787840419398,65357054283015120 %N A340992 a(n) is the (2n)-th term of the n-fold self-convolution of the number of divisors function tau. %H A340992 Alois P. Heinz, <a href="/A340992/b340992.txt">Table of n, a(n) for n = 0..1281</a> %F A340992 a(n) = [x^(2n)] (Sum_{j>=1} tau(j)*x^j)^n. %F A340992 a(n) = A320019(2n,n). %p A340992 b:= proc(n, k) option remember; `if`(k=0, 1, %p A340992 `if`(k=1, numtheory[tau](n+1), (q-> %p A340992 add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A340992 end: %p A340992 a:= n-> b(n$2): %p A340992 seq(a(n), n=0..23); %t A340992 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[0, n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]]; %t A340992 a[n_] := T[2n, n]; %t A340992 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Dec 13 2023, after _Alois P. Heinz_ in A320019 *) %Y A340992 Cf. A000005, A320019. %K A340992 nonn %O A340992 0,2 %A A340992 _Alois P. Heinz_, Feb 01 2021