This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340994 #13 Aug 18 2021 12:27:04 %S A340994 1,1,5,19,89,391,1817,8429,39697,187849,894965,4282191,20572961, %T A340994 99158645,479294877,2322365959,11276837761,54860498415,267336028565, %U A340994 1304677123305,6375749480369,31195075605755,152798541606529,749184538847397,3676699991008897 %N A340994 a(n) is the (2n)-th term of the n-fold self-convolution of the Euler totient function phi. %H A340994 Alois P. Heinz, <a href="/A340994/b340994.txt">Table of n, a(n) for n = 0..1431</a> %F A340994 a(n) = [x^(2n)] (Sum_{j>=1} mu(j)*x^j/(1-x^j)^2)^n. %F A340994 a(n) = A340995(2n,n). %F A340994 a(n) ~ c * d^n / sqrt(n), where d = 5.0117569538757703168577972551675369123003378927616324330274512382246419... and c = 0.287455327702489527773675891801880332800309441856159133456758815116... - _Vaclav Kotesovec_, Aug 18 2021 %p A340994 b:= proc(n, k) option remember; `if`(k=0, 1, %p A340994 `if`(k=1, numtheory[phi](n+1), (q-> %p A340994 add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A340994 end: %p A340994 a:= n-> b(n$2): %p A340994 seq(a(n), n=0..29); %Y A340994 Cf. A000010, A008683, A340995. %K A340994 nonn %O A340994 0,3 %A A340994 _Alois P. Heinz_, Feb 01 2021