This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A340995 #17 Feb 14 2021 15:52:47 %S A340995 1,0,1,0,1,1,0,2,2,1,0,2,5,3,1,0,4,8,9,4,1,0,2,16,19,14,5,1,0,6,20,42, %T A340995 36,20,6,1,0,4,36,72,89,60,27,7,1,0,6,44,134,184,165,92,35,8,1,0,4,68, %U A340995 210,376,391,279,133,44,9,1,0,10,76,348,688,880,738,441,184,54,10,1 %N A340995 Triangle T(n,k) whose k-th column is the k-fold self-convolution of the Euler totient function phi; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A340995 Alois P. Heinz, <a href="/A340995/b340995.txt">Rows n = 0..200, flattened</a> %F A340995 T(n,k) = [x^n] (Sum_{j>=1} phi(j)*x^j)^k. %e A340995 Triangle T(n,k) begins: %e A340995 1; %e A340995 0, 1; %e A340995 0, 1, 1; %e A340995 0, 2, 2, 1; %e A340995 0, 2, 5, 3, 1; %e A340995 0, 4, 8, 9, 4, 1; %e A340995 0, 2, 16, 19, 14, 5, 1; %e A340995 0, 6, 20, 42, 36, 20, 6, 1; %e A340995 0, 4, 36, 72, 89, 60, 27, 7, 1; %e A340995 0, 6, 44, 134, 184, 165, 92, 35, 8, 1; %e A340995 0, 4, 68, 210, 376, 391, 279, 133, 44, 9, 1; %e A340995 0, 10, 76, 348, 688, 880, 738, 441, 184, 54, 10, 1; %e A340995 ... %p A340995 T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), %p A340995 `if`(k=1, `if`(n=0, 0, numtheory[phi](n)), (q-> %p A340995 add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A340995 end: %p A340995 seq(seq(T(n, k), k=0..n), n=0..12); %t A340995 T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], %t A340995 If[k == 1, If[n == 0, 0, EulerPhi[n]], With[{q = Quotient[k, 2]}, %t A340995 Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]]; %t A340995 Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 13 2021, after _Alois P. Heinz_ *) %Y A340995 Columns k=0-2 give (offsets may differ): A000007, A000010, A065093. %Y A340995 Row sums give A159929. %Y A340995 T(2n,n) gives A340994. %K A340995 nonn,tabl %O A340995 0,8 %A A340995 _Alois P. Heinz_, Feb 01 2021