This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341015 #11 Feb 07 2021 02:58:43 %S A341015 1,2,3,4,5,6,9,18,25,27,54,81,125,162,243,486,625,729,1458,2187,3125, %T A341015 4374,6561,13122,15625,19683,39366,59049,78125,118098,177147,354294, %U A341015 390625,531441,1062882,1594323,1953125,3188646,4782969,9565938,9765625,14348907,28697814 %N A341015 Numbers k such that A124446(k) = 1. %C A341015 Numbers k such that A066840(k) and A124440(k) are coprime. %C A341015 Contains all numbers of the forms 3^j, 2*3^j and 5^j. %C A341015 Conjecture: the only term not of one of those forms is 4. %F A341015 A124446(a(n)) = 1. %e A341015 18 is a term because A066840(18) = 13 and A124440(18) = 41 are coprime. %p A341015 N:= 2*10^4: # for terms <= N %p A341015 G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2),n=1..N/2): %p A341015 S:= series(G,x,N+1): %p A341015 A66840:= [seq(coeff(S,x,j),j=1..N)]: %p A341015 filter:= n -> igcd(A66840[n], n*numtheory:-phi(n)/2)=1: %p A341015 filter(1):= true: %p A341015 select(filter, [$1..N]); %Y A341015 Cf. A066840, A124440, A124446. %K A341015 nonn %O A341015 1,2 %A A341015 _J. M. Bergot_ and _Robert Israel_, Feb 02 2021 %E A341015 More terms from _Jinyuan Wang_, Feb 07 2021