This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341018 #20 Feb 05 2021 00:48:33 %S A341018 0,1,2,3,2,3,2,1,0,1,0,1,2,3,4,3,4,5,4,5,6,7,8,7,8,7,6,5,6,5,6,7,8,9, %T A341018 8,9,10,11,12,11,12,13,14,15,14,15,14,13,12,13,14,15,14,15,14,13,12, %U A341018 11,12,11,10,9,8,9,8,9,8,9,10,11,12,11,12,13,14,15 %N A341018 a(n) is the X-coordinate of the n-th point of the space filling curve M defined in Comments section; A341019 gives Y-coordinates. %C A341018 We define the family {M_n, n >= 0}, as follows: %C A341018 - M_0 corresponds to the points (0, 0), (1, 1) and (2, 0), in that order: %C A341018 + %C A341018 / \ %C A341018 / \ %C A341018 + + %C A341018 O %C A341018 - for any n >= 0, M_{n+1} is obtained by arranging 4 copies of M_n as follows: %C A341018 + . . . + . . . + %C A341018 . B . B . %C A341018 + . . . + . . . %C A341018 . B . .A C.A C. %C A341018 . . --> + . . . + . . . + %C A341018 .A C. .C . A. %C A341018 + . . . + . B.B . %C A341018 O .A . C. %C A341018 + . . . + . . . + %C A341018 O %C A341018 - for any n >= 0, M_n has A087289(n) points, %C A341018 - the space filling curve M is the limit of M_{2*n} as n tends to infinity. %C A341018 The odd bisection of M is similar to a Hilbert's Hamiltonian walk (hence the connection with A059253, see illustration in Links section). %H A341018 Rémy Sigrist, <a href="/A341018/b341018.txt">Table of n, a(n) for n = 0..8192</a> %H A341018 F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no. 1, 1982. %H A341018 Larry Riddle, <a href="http://larryriddle.agnesscott.org/ifs/spacefilling/spacefilling.htm">Space Filling Curve</a> %H A341018 Rémy Sigrist, <a href="/A341018/a341018.png">Illustration of M_6</a> %H A341018 Rémy Sigrist, <a href="/A341018/a341018_1.png">Illustration of the connection between the space filling curve M and Hilbert Hamiltonian walk</a> %H A341018 Rémy Sigrist, <a href="/A341018/a341018.gp.txt">PARI program for A341018</a> %H A341018 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A341018 a(n) = A341019(n) iff n belongs to A000695. %F A341018 a(2*n-1) + A341019(2*n-1) = a(2*n) + A341019(2*n) for any n > 0. %F A341018 a(2*n) - A341019(2*n) = a(2*n+1) - A341019(2*n+1) for any n >= 0. %F A341018 A059253(n) = (a(2*n+1) - 1)/2. %F A341018 a(4*n) = 2*A341019(n). %F A341018 a(16*n) = 4*a(n). %e A341018 The curve M starts as follows: %e A341018 11+ 13+ +19 +21 %e A341018 / \ / \ / \ / \ %e A341018 10+ 12+ 14+18 +20 +22 %e A341018 \ / \ / %e A341018 9+ 15+ +17 +23 %e A341018 / \ / \ %e A341018 8+ 6+ + +26 +24 %e A341018 \ / \ 16 / \ / %e A341018 7+ 5+ +27 +25 %e A341018 / \ %e A341018 4+ +28 %e A341018 \ / %e A341018 1+ 3+ +29 +31 %e A341018 / \ / \ / \ %e A341018 0+ 2+ +30 +32 %e A341018 - so a(0) = a(8) = a(10) = 0, %e A341018 a(1) = a(7) = a(9) = a(11) = 1. %o A341018 (PARI) See Links section. %Y A341018 Cf. A000695, A059253, A087289, A341019. %K A341018 nonn %O A341018 0,3 %A A341018 _Rémy Sigrist_, Feb 02 2021