This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341019 #14 Feb 05 2021 00:48:41 %S A341019 0,1,0,1,2,3,4,3,4,5,6,7,6,7,6,5,4,5,6,7,6,7,6,5,4,3,4,3,2,1,0,1,0,1, %T A341019 2,3,2,3,2,1,0,1,0,1,2,3,4,3,4,5,4,5,6,7,8,7,8,7,6,5,6,5,6,7,8,9,10, %U A341019 11,10,11,10,9,8,9,8,9,10,11,12,11,12,13,12 %N A341019 a(n) is the Y-coordinate of the n-th point of the space filling curve M defined in Comments section; A341018 gives X-coordinates. %C A341019 We define the family {M_n, n >= 0}, as follows: %C A341019 - M_0 corresponds to the points (0, 0), (1, 1) and (2, 0), in that order: %C A341019 + %C A341019 / \ %C A341019 / \ %C A341019 + + %C A341019 O %C A341019 - for any n >= 0, M_{n+1} is obtained by arranging 4 copies of M_n as follows: %C A341019 + . . . + . . . + %C A341019 . B . B . %C A341019 + . . . + . . . %C A341019 . B . .A C.A C. %C A341019 . . --> + . . . + . . . + %C A341019 .A C. .C . A. %C A341019 + . . . + . B.B . %C A341019 O .A . C. %C A341019 + . . . + . . . + %C A341019 O %C A341019 - for any n >= 0, M_n has A087289(n) points, %C A341019 - the space filling curve M is the limit of M_{2*n} as n tends to infinity. %C A341019 The odd bisection of M is similar to a Hilbert's Hamiltonian walk (hence the connection with A059252). %H A341019 Rémy Sigrist, <a href="/A341019/b341019.txt">Table of n, a(n) for n = 0..8192</a> %H A341019 F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no. 1, 1982. %H A341019 Larry Riddle, <a href="http://larryriddle.agnesscott.org/ifs/spacefilling/spacefilling.htm">Space Filling Curve</a> %H A341019 Rémy Sigrist, <a href="/A341019/a341019.gp.txt">PARI program for A341019</a> %H A341019 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A341019 A059252(n) = (a(2*n+1)-1)/2. %F A341019 a(4*n) = 2*A341018(n). %F A341019 a(16*n) = 4*a(n). %e A341019 The curve M starts as follows: %e A341019 11+ 13+ +19 +21 %e A341019 / \ / \ / \ / \ %e A341019 10+ 12+ 14+18 +20 +22 %e A341019 \ / \ / %e A341019 9+ 15+ +17 +23 %e A341019 / \ / \ %e A341019 8+ 6+ + +26 +24 %e A341019 \ / \ 16 / \ / %e A341019 7+ 5+ +27 +25 %e A341019 / \ %e A341019 4+ +28 %e A341019 \ / %e A341019 1+ 3+ +29 +31 %e A341019 / \ / \ / \ %e A341019 0+ 2+ +30 +32 %e A341019 - so a(0) = a(2) = a(30) = a(32) = 0, %e A341019 a(1) = a(3) = a(29) = a(31) = 1. %o A341019 (PARI) See Links section. %Y A341019 Cf. A059252, A087289, A341018. %K A341019 nonn %O A341019 0,5 %A A341019 _Rémy Sigrist_, Feb 02 2021