cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341029 Twice the area of the convex hull around dragon curve expansion level n.

This page as a plain text file.
%I A341029 #17 Apr 28 2023 08:15:55
%S A341029 0,1,3,9,23,56,121,258,539,1118,2273,4614,9323,18806,37761,75798,
%T A341029 151979,304598,609793,1220694,2442923,4888406,9779201,19562838,
%U A341029 39131819,78273878,156557313,313132374,626289323,1252619606,2505277441,5010625878,10021350059
%N A341029 Twice the area of the convex hull around dragon curve expansion level n.
%C A341029 The area of the hull is a half-integer for n=1..4 and even n>=6, so the sequence is a(n) = 2*area to give integers.
%C A341029 Benedek and Panzone determine the vertices of the convex hull around the dragon fractal.  The area of that hull is 7/6 (A177057).  This is the limit for the finite expansions scaled down to a unit distance start to end: lim_{n->oo} (a(n)/2) / 2^n = 7/6.
%H A341029 Kevin Ryde, <a href="/A341029/b341029.txt">Table of n, a(n) for n = 0..600</a>
%H A341029 Agnes I. Benedek and Rafael Panzone, <a href="https://inmabb.criba.edu.ar/revuma/pdf/v39n1y2/p076-089.pdf">On Some Notable Plane Sets, II: Dragons</a>, Revista de la Unión Matemática Argentina, volume 39, numbers 1-2, 1994, pages 76-90.
%H A341029 Kevin Ryde, <a href="http://user42.tuxfamily.org/dragon/index.html">Iterations of the Dragon Curve</a>, see index "HA".
%H A341029 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,3,2,-12,12,-12,8).
%F A341029 For n>=2, a(n) = (7/3)*2^n - (h/6)*2^floor(n/2) + c/3, where h = 22,29,22,31 and c = 1,2,3,2 according as n == 0,1,2,3 (mod 4) respectively.
%F A341029 a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) + 2*a(n-4) - 12*a(n-5) + 12*a(n-6) - 12*a(n-7) + 8*a(n-8) for n>=10.
%F A341029 G.f.: x*(1 + 3*x^2 + 2*x^3 + 3*x^4 + x^5 - 2*x^7 - 4*x^8) /( (1-x) * (1-2*x) * (1+x^2) * (1-2*x^2) * (1+2*x^2) ).
%F A341029 G.f.: 1 + (1/2)*x + (2/3)/(1-x) - (1/3)/(1+x^2) + (1/6)*x/(1+2*x^2) - (11/3 + 5*x)/(1-2*x^2) + (7/3)/(1-2*x).
%e A341029   @   *---@          curve expansion level n=3,
%e A341029   |   |   |          convex hull vertices marked "@",
%e A341029   @---*   *---@      area = 4+1/2,
%e A341029               |      a(3) = 2*area = 9
%e A341029           @---@
%o A341029 (PARI) my(h=[22,29,22,31]); a(n) = if(n<2,n, (7<<n - h[n%4+1]<<(n\2-1))\3 + 1);
%Y A341029 Cf. A177057 (fractal hull area), A341030 (fractal hull perimeter).
%Y A341029 Cf. A362566 (bounding box area).
%K A341029 nonn,easy
%O A341029 0,3
%A A341029 _Kevin Ryde_, Feb 02 2021