This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341032 #12 Feb 04 2021 00:04:46 %S A341032 1,2,10,17,469,646,1542,1601,24939,25090,43690,50925,77577,84002, %T A341032 131087,156817,174755,182106,220974,293930,371307,389130,394290, %U A341032 401573,440819,492886,584326,609301,839590,935685,1727207,1775622,1939666,1948705,2235041,2267650 %N A341032 Numbers k such that A124440(k) is a square. %C A341032 Terms in common with A341031, i.e. numbers such that both A066840(k) and A124440(k) are squares, include 1, 2, 10, 17, and 25090. %H A341032 Daniel Suteu, <a href="/A341032/b341032.txt">Table of n, a(n) for n = 1..100</a> %e A341032 a(4) = 17 is a term because A124440(17) = 100 = 10^2. %p A341032 N:= 40000: # for terms <= N %p A341032 G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2), n=1..N/2): %p A341032 S:= series(G, x, N+1): %p A341032 A66840:= [seq(coeff(S, x, j), j=1..N)]: %p A341032 f:= proc(n) n*numtheory:-phi(n)/2 - A66840[n] end proc: %p A341032 f(1):= 1: f(2):= 1: %p A341032 select(t -> issqr(f(t)), [$1..N]); %Y A341032 Cf. A066840, A122440, A341031. %K A341032 nonn %O A341032 1,2 %A A341032 _J. M. Bergot_ and _Robert Israel_, Feb 03 2021 %E A341032 More terms from _Daniel Suteu_, Feb 03 2021