This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341038 #14 Feb 04 2021 20:06:52 %S A341038 1,5,7,17,11,39,15,49,34,59,23,144,27,79,86,129,35,198,39,219,114,119, %T A341038 47,436,86,139,142,287,59,523,63,321,170,179,190,760,75,199,198,676, %U A341038 83,690,87,423,453,239,95,1184,162,474,254,491,107,846,278,896,282,299,119,2061,123,319,613,769 %N A341038 a(n) = Sum_{i+j<=m+1} d_i * d_j, where d_1 < ... < d_m are the divisors of n. %C A341038 If p is prime, a(p^k) = k*p^(k+1)/(p-1) + ((p-2)*p^(k+1)+1)/(p-1)^2. %C A341038 If p < q are primes, a(p*q) = 1 + 2*p + 2*q + p^2 + 4*p*q. %H A341038 Robert Israel, <a href="/A341038/b341038.txt">Table of n, a(n) for n = 1..10000</a> %e A341038 The divisors of 6 are 1,2,3,6, so a(6) = 1*(1+2+3+6)+2*(1+2+3)+3*(1+2)+6*1 = 39. %p A341038 f:= proc(n) local D,S,i; %p A341038 D:= sort(convert(numtheory:-divisors(n),list)); %p A341038 S:= ListTools:-PartialSums(D); %p A341038 add(S[-i]*D[i],i=1..nops(D)) %p A341038 end proc: %p A341038 map(f, [$1..100]); %o A341038 (PARI) a(n) = my(d=divisors(n)); sum(k=1, #d, d[k]*sum(i=1, #d-k+1, d[i])); \\ _Michel Marcus_, Feb 04 2021 %Y A341038 Cf. A341039 %K A341038 nonn,look %O A341038 1,2 %A A341038 _J. M. Bergot_ and _Robert Israel_, Feb 03 2021