A341078 Incrementally largest values of minimal y satisfying the equation x^2 - D*y^2 = -3, where D is a prime number.
1, 2, 722, 837158, 77228318, 5436980738, 49637737974482, 462761120757722506058, 2836540596515452087502, 37216095020093890760397134162, 1858485134141860820807351059562927114738, 42507485681147639763501995374671391449914
Offset: 1
Keywords
Examples
From _Jon E. Schoenfield_, Feb 23 2021: (Start) As D runs through the primes, the minimal y values satisfying the equation x^2 - D*y^2 = -3 begin as follows: . x values satisfying minimal D x^2 - D*y^2 = -5 y value record -- ---------------------- ------- ------ 2 (none) 3 1, 2, 7, 26, 97, ... 1 * 5 (none) 7 1, 2, 14, 31, 223, ... 1 11 (none) 13 2, 38, 2558, ... 2 * 17 (none) 19 1, 14, 326, 4759, ... 1 23 (none) 29 (none) 31 2, 37, 604, ... 2 37 (none) 41 (none) 43 2, 61, 13867, ... 2 47 (none) 53 (none) 59 (none) 61 722, 60158, ... 722 * ... The record high minimal values of y (marked with asterisks) are the terms of this sequence. The corresponding values of D are the terms of A341077. (End)
Links
- Christine Patterson, COCALC (Sage) Program
Extensions
Edited by Jon E. Schoenfield, Feb 23 2021