This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341090 #16 Feb 15 2022 21:12:56 %S A341090 1,2,3,4,5,6,7,8,9,10,11,12,31,14,15,16,71,18,19,20,21,22,23,24,25,62, %T A341090 27,28,29,30,13,32,33,142,35,36,73,38,93,40,41,42,43,44,45,46,47,48, %U A341090 49,50,213,124,53,54,55,56,57,58,59,60,61,26,63,64,155,66 %N A341090 Fully multiplicative: for any prime p, if the reversal of p in base 10, say q, is prime, then a(p) = q, otherwise a(p) = p. %C A341090 This sequence is a self-inverse permutation of the natural numbers. %H A341090 Rémy Sigrist, <a href="/A341090/a341090.png">Scatterplot of (n, a(n)) for n, a(n) <= 1000000</a> %H A341090 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A341090 For n = 377: %e A341090 - 377 = 13 * 29, %e A341090 - the reversal of 13, 31, is prime, %e A341090 - the reversal of 29, 92, is not prime, %e A341090 - so a(377) = 31 * 29 = 899. %p A341090 R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n): %p A341090 a:= proc(n) option remember; mul((q-> %p A341090 `if`(isprime(q), q, j[1]))(R(j[1]))^j[2], j=ifactors(n)[2]) %p A341090 end: %p A341090 seq(a(n), n=1..66); # _Alois P. Heinz_, Feb 15 2022 %t A341090 f[p_, e_] := If[PrimeQ[(q = IntegerReverse[p])], q, p]^e; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 15 2022 *) %o A341090 (PARI) a(n) = { my (f=factor(n)); prod (k=1, #f~, my (p=f[k,1], e=f[k,2], q=fromdigits(Vecrev(digits(p)))); if (isprime(q), q, p)^e) } %Y A341090 Cf. A004086, A071786, A235027. %K A341090 nonn,base,mult %O A341090 1,2 %A A341090 _Rémy Sigrist_, Feb 13 2022