A341092 Rows of Pascal's triangle which contain a 3-term arithmetic progression of a certain form: a(n) = (2n^2 + 22n + 37 + (2n + 3)*(-1)^n)/8.
7, 12, 14, 21, 23, 32, 34, 45, 47, 60, 62, 77, 79, 96, 98, 117, 119, 140, 142, 165, 167, 192, 194, 221, 223, 252, 254, 285, 287, 320, 322, 357, 359, 396, 398, 437, 439, 480, 482, 525, 527, 572, 574, 621, 623, 672, 674, 725, 727, 780, 782, 837, 839, 896, 898, 957, 959
Offset: 1
Examples
With n=2, k=binomial(n+2=4,2)=6. m=binomial(n+3=5,2)-4+k=12. [C(m,k-4), C(m,k-2), C(m,k)] = [66,495,924], and [C(m+2,k-2), C(m+2,k-1), C(m+2,k)] = [1001,2002,3003], so a(2)=m=12 and a(3)=m+2=14.
Links
- Ralf Stephan, Prove or Disprove. 100 Conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
PARI
a(n) = (2*n^2 + 22*n + 37 + (2*n + 3)*(-1)^n)/8 \\ Charles R Greathouse IV, Apr 02 2022
-
Python
seq=[] for n in range(2,101): k=int(((n)*(n+1))/2) m=int(((n+1)*(n+2))/2)-4+k if n==2: seq.append(m+2) else: seq.append(m) seq.append(m+2) print(seq)
Comments