A341100 Minimum number of base-2 rectangles needed to tile an n X n square.
1, 1, 4, 1, 4, 4, 9, 1, 4, 4, 9, 4, 9, 9, 13, 1, 4, 4, 9, 4, 9, 9, 15, 4, 9, 9, 16, 9, 16, 13, 17, 1, 4, 4, 9, 4, 9, 9, 16, 4, 9, 9, 16, 9, 16, 15, 19, 4, 9, 9, 16, 9, 16, 16, 20, 9, 16, 16, 20, 13, 20, 17, 21
Offset: 1
Keywords
Examples
A 5 X 5 square can be covered with 4 such rectangles and this is the minimum, so a(5) = 4. Here is a possible covering: 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 3 3 3 3 4 n=15 is the smallest n where a(n) < f(n)^2, since a(15) = 13. Here is a possible covering found by Bubbler on Puzzling StackExchange: A A A A B B C 1 1 1 1 1 1 1 1 A A A A B B C 1 1 1 1 1 1 1 1 A A A A B B C 1 1 1 1 1 1 1 1 A A A A B B C 1 1 1 1 1 1 1 1 A A A A B B C 2 2 2 2 2 2 2 2 A A A A B B C 2 2 2 2 2 2 2 2 A A A A B B C 3 3 3 3 3 3 3 3 A A A A B B C 0 X Y Y Z Z Z Z 7 7 7 7 7 7 7 7 X Y Y Z Z Z Z 8 8 8 8 8 8 8 8 X Y Y Z Z Z Z 8 8 8 8 8 8 8 8 X Y Y Z Z Z Z 9 9 9 9 9 9 9 9 X Y Y Z Z Z Z 9 9 9 9 9 9 9 9 X Y Y Z Z Z Z 9 9 9 9 9 9 9 9 X Y Y Z Z Z Z 9 9 9 9 9 9 9 9 X Y Y Z Z Z Z
Links
- ali, Tiling a square with rectangles, Mathematics StackExchange, 2019.
- Dmitry Kamenetsky, Covering a 15x15 grid with rectangles, Puzzling StackExchange, 2021.
Crossrefs
Cf. A000120.
Formula
a(n) <= f(n)^2, where f(n) is the number of 1's in the binary representation of n (A000120).
a(n * 2^k) = a(n) for k >= 0.
Comments